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    Chapter 7   

 Methods for Library-Scale Computational Protein Design 

           Lucas     B.     Johnson    ,     Thaddaus     R.     Huber    , and     Christopher     D.     Snow    

    Abstract 

   Faced with a protein engineering challenge, a contemporary researcher can choose from myriad design 
strategies. Library-scale computational protein design (LCPD) is a hybrid method suitable for the engi-
neering of improved protein variants with diverse sequences. This chapter discusses the background and 
merits of several practical LCPD techniques. First, LCPD methods suitable for delocalized protein design 
are presented in the context of example design calculations for cellobiohydrolase II. Second, localized 
design methods are discussed in the context of an example design calculation intended to shift the sub-
strate specifi city of a ketol-acid reductoisomerase Rossmann domain from NADPH to NADH.  

  Key words     Protein library design  ,   Codon selection  ,   Protein engineering  ,   Computational protein 
design  ,   Consensus analysis  ,   Recombination  ,   SCHEMA  

1      Introduction 

 Library-scale design includes many divergent methods, ranging 
from random mutagenesis (e.g., error-prone PCR) to computa-
tional protein design. Library-scale design methods strive to achieve 
three goals: produce many diverse solutions, maintain folding and 
functionality in the majority of variants, and maximize ease of 
interpretation. 

 In practice, directed evolution (DE) is a remarkably effective 
library design method; many protein engineering challenges are 
readily solved via the stepwise accumulation of random mutations 
[ 1 ,  2 ]. Moreover, whereas a structure is typically a prerequisite for 
computational protein design (CPD), no special insight into the 
structure and function of the protein is required for DE methods. 
However, the search space of all random mutations is enormous; 
even a high-throughput assay can only sample a tiny fraction of 
the sequences within a few mutations from a parent sequence. 
Interpreting randomly accumulated mutations can also be diffi cult. 
Only in rare instances can favorable mutations be rationalized from 
available structural models. 
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 Compared to DE, CPD methods can consider an astronomical 
number of candidate sequences, including sequences that vary sig-
nifi cantly from the initial sequence. CPD can result in impressive 
changes to the stability [ 3 ], aggregation-resistance [ 4 ], specifi city 
[ 5 ], or enzymatic activity [ 6 ,  7 ], to name a few examples. Despite 
these successes, the foundation of CPD relies upon approximate 
models of protein structure and stability. Defi ciencies in the scor-
ing function or in the sampling of potential conformations can 
result in unfolded or inactive design variants [ 8 ]. Experimental 
testing of CPD sequences provides a referendum on the underly-
ing CPD methodology; however, in practice it is diffi cult to learn 
from the success or failure of a single design attempt. An unfolded 
design variant indicates a model defi ciency, but usually does not 
reveal an unambiguous remedy. 

 The philosophies behind these different methods are diver-
gent: a pure DE scheme can be effective in the absence of protein 
structure and function information, while an accurate model 
of protein structure and function is the foundation and goal of 
CPD. Despite these philosophical differences, the gap between DE 
and CPD can be quite small in practice. For instance, a design cycle 
might start by using CPD to identify a low-energy sequence and 
progress to DE methods [ 9 – 11 ]. Combining the rational methods 
of CPD with DE screening methods balances search size with 
diversity. Rather than a search based on a large number of blind 
guesses (random mutations), one can formulate a search over a 
discrete set of hypotheses. Library-scale computational protein 
design (LCPD) methods combine rational and random methods 
to create a discrete set of hypothesized variants. Ideally, LCPD 
results in interpretable libraries that (1) are enriched for improved 
variants and (2) provide useful information for predicting sequence-
structure- function relationships. 

 The appropriate choice of method will depend on the design 
goal at hand. Our fi rst example discusses LCPD strategies and 
tools suitable for altering delocalized protein properties. Delo-
calized properties, such as stability or solubility, are the result of 
numerous amino acid interactions across a protein. Our second 
example focuses on protein properties that are localized to a dis-
tinct region. Signifi cant variation within localized regions, such as 
binding pockets or protein interfaces, can create libraries with 
varying substrate specifi city or enzymatic activity.  

2    Materials 

 All computational scripts mentioned in this example are available 
at   www.sharp-n.org    . SHARPEN is an open-source C++/Python 
software library intended to facilitate the development of new 
algorithms for protein modeling and design.  

Lucas B. Johnson et al.
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3    Example I: Delocalized Design Libraries 

 Diverse libraries sample a broad range of sequence space, farther 
afi eld from an initial sequence, and are therefore more likely to 
contain signifi cant variants of interest. However, when construct-
ing a library of protein sequences, a trade-off is established between 
sequence diversity and library stability. Library stability is refl ected 
in the properties of the individual sequences in two ways. First, a 
stable library will have few unfolded sequences. Second, the indi-
vidual folded sequences within the library will be stable and func-
tional. While allowing a wide range of mutations within a library 
greatly increases diversity, many mutations will decrease library  stability 
[ 12 ]. When available, structural models can guide the selection of 
stable sequences by providing insight into which mutations are 
likely to be destabilizing [ 13 ]. 

 Current library design methods use sequence and structure 
information to predict potentially stabilizing mutations. Hecht and 
co-workers have demonstrated the ability to design de novo pro-
teins with binary patterning of polar and nonpolar amino acids 
[ 14 – 16 ]. Alternatively, the palette can be designed to ensure that 
mutations are compatible with the neighboring amino acids, con-
sidering multiple amino acid properties, such as volume, charge, 
and hydrophobicity [ 17 ]. Furthermore, information from multiple 
sequence alignments can be used to identify tolerated or favored 
mutations at each site [ 18 – 21 ]. Structural models can still be  useful 
in conjunction with sequence-based design methods. For example, 
a structure can be used to refi ne ambiguous portions of the align-
ment (i.e., insertion/deletion sites) and to determine if certain 
residues (e.g., Pro, Trp) are likely to be incompatible with the pro-
tein backbone or the neighboring amino acids. 

 If detailed structural models are available, combinatorial CPD 
methods can be used. These methods provide each amino acid 
with multiple side chain conformations (rotamers) and provide 
each design site with multiple candidate amino acid identities [ 22 , 
 23 ]. The design calculation is thus reduced to the combinatorial 
optimization problem of fi nding a rotamer combination of low 
energy. This problem can be solved using stochastic methods such 
as simulated annealing. The identifi cation of the global minimum 
energy combination can also be achieved using methods such as 
dead-end elimination [ 24 ]. 

 To obtain a library of designed sequences, a simple expedient is 
to repeatedly execute a stochastic design method or to design com-
binatorial mutation libraries to capture the sequence variation 
found within the pool of design solutions [ 25 – 27 ]. Such a library, 
however, will vary largely at sites that the CPD methods are found 
to be of marginal importance. Furthermore, if the CPD method 
confi dently selects an unfavorable mutation (a systematic error), the 
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poor choice could be present in all members of a library. Such an 
error could cause the entire library to be unfolded or nonfunc-
tional. For example, a CPD algorithm with insuffi cient weight for 
van der Waal interactions might “overpack” the protein core, result-
ing in a molten globule sequence. 

 In contrast, an interpretable library of CPD variants could 
be designed to explicitly uncover and overcome systematic errors. 
A typical CPD scoring function assesses amino acid interactions as 
a series of contributions from hydrogen bonding, hydrophobic 
packing, van der Waals interactions, salt-bridge interactions, and 
other terms. A favorable design library would serve as a training set 
suitable for “learning” the weights associated with these different 
types of interactions. Whereas a CPD method might predict a 
 stabilizing surface salt-bridge, a good library design would test this 
hypothesis. For example, if the library contains variants with the 
wild-type interaction, variants with the proposed salt-bridge, and 
variants with only one partner substituted, there is the possibility 
of determining the effective contribution of the salt-bridge. The 
concept is similar to the idea of a double-mutant cycle, although in 
this case the interaction is assessed in the presence of potentially 
confounding background sequence variation. If the library con-
tains many such examples, the energy function could be trained to 
better predict the importance of salt-bridge interactions. 

 Recombination can be used to generate libraries that reduce 
the trade-off between library diversity and library stability; 
sequences generated through recombination are much more likely 
to retain stability than comparably diverse sequences generated 
through mutagenesis [ 28 ]. Similar to DNA shuffl ing [ 29 ,  30 ], site-
directed recombination diversifi es a library by substituting sequence 
blocks that contain multiple mutations. Recombination of homol-
ogous wild-type sequences has proven to be an effective library 
design method for a variety of protein folds including beta- 
lactamase [ 31 ], cytochrome P450 [ 32 ], arginase [ 33 ], and several 
cellulase families [ 34 – 37 ]. 

 Recombination need not be limited to natural sequences; 
homologous parent sequences identifi ed from directed evolution 
or CPD methods could also be recombined to create a diverse 
library. In the example below, we recombine one wild-type parent 
with two computationally designed sequences. Incorporating com-
putational designs into a recombination library allows the designer 
to specifi cally target a library property of interest (e.g., stability at 
low pH). Energy scoring functions attempt to incorporate many 
global stability factors, including hydrogen bonds, hydrophobic 
interactions, packing effi ciency, and conformational strain. By sear-
ching through a large sequence space, computational designs may 
identify improved variants that have never occurred in nature. As 
discussed above, CPD variants are likely to include design errors. 
Recombining blocks from CPD variants with a wild-type sequence 
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will allow the dissection of stabilizing and destabilizing sequence 
motifs. Constructing a chimera sequence that incorporates suc-
cessfully designed blocks from the CPD sequence and leaves out 
blocks corresponding to CPD failures is likely to result in chimeras 
that meet the design goals. 

 In the example below, we demonstrate how LCPD methods 
might be applied with a model target, cellobiohydrolase II (CBHII) 
from  Humicola insolens  (PDB entry 1OCN). In the fi rst two sec-
tions, parent sequences are designed using CPD. We then recom-
bine the parents to form a chimera library. The fi nal section discusses 
how information from library screening could be used to enhance 
subsequent designs. We will not discuss the experimental construc-
tion of chimera libraries because protocols for site-directed chime-
ragenesis are thoroughly described in earlier reports [ 38 ,  39 ]. 

  To begin a protein design problem we defi ne a design palette: 
the set of candidate amino acids for each design position. Ideally, 
the design palette should be limited in size so that the resulting 
sequence space can be computationally searched in a reasonable 
time frame. Early zinc fi nger protein design work by Dahiyat and 
Mayo demonstrated the value of specifying a carefully selected 
design palette [ 40 ]. In this case the palette was restricted to alanine 
and hydrophilic residues (Ala, Ser, Thr, His, Asp, Asn, Glu, Gln, 
Lys, and Arg) at surface sites, hydrophobic residues (Ala, Val, Leu, 
Ile, Phe, Tyr, and Trp) at buried sites, and hydrophilic or hydro-
phobic residues at boundary sites. Furthermore, two sites with φ 
angles greater than 0° were restricted to Gly only. Even with this 
reduced design palette, the small 30-residue protein had a search 
space of 1.9 × 10 27  possible sequences, or 1.1 × 10 62  unique confor-
mational variations. Modern computers and search algorithms can 
effectively search combinatorial solution spaces of this astounding 
size [ 24 ,  41 ], but such a diverse palette would not be feasible for 
proteins with hundreds of residues. One reason to use a design 
palette is to avoid buried hydrophilic amino acids and exposed 
hydrophobic amino acids. However, Kuhlman and co-workers 
recently reported a method for avoiding hydrophobic surface patches 
without eliminating them from the design palette altogether [ 42 ]. 

 At the outset of a design challenge it can be diffi cult to cali-
brate the design palette. A conservative design palette would con-
sist of relatively few design sites, and would avoid any mutations 
that are a priori likely to be disruptive. While a non-conservative 
palette may facilitate the design of a superior sequence, it will also 
allow more mutations, lead to a diverse library, and may result in a 
largely unfolded library. The balance between diversity and stabil-
ity motivates an iterative approach; if the desired library “pheno-
type” and library stability are not achieved in the fi rst round of 
library design, the palette can be adapted in subsequent iterations 
to be more or less conservative. 

3.1  Phase I: Create 
a Design Palette

Library-Scale Computational Protein Design
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 In this example, we design a very conservative palette intended 
to engender a largely folded library. First, prevalent mutations are 
identifi ed from homologous multiple sequence alignments. While 
mutations commonly seen in consensus alignments are not guaran-
teed to be stabilizing, the selective pressure of evolution strongly 
suggests that these mutations are not destabilizing. Second, fold-
ing free energy changes are estimated for every point mutation. 
In principle, excluding mutations predicted to have unfavorable 
folding free energy changes will result in a smaller, conservative 
palette that is less likely to harbor destabilizing mutations.

    1.    Identify sequences with a high sequence identity to the query 
sequence. 
 We used the Basic Local Alignment Search Tool (blast.ncbi.
nlm.nih.gov) to identify similar sequences and retained align-
ments with sequence identity greater than 35 %. For the CBHII 
consensus analysis, 175 sequences met this cutoff criterion.   

   2.    Identify common amino acids at each site and save in a consen-
sus design palette. 
 BLAST results were parsed using  run _ alignment.py . A cumu-
lative approach was used that retained the most common 
amino acid, second most common amino acid, etc. at each site 
until 90 % of the sequences had been included.   

   3.    Calculate predicted folding free energy changes (ΔΔ G ) for 
each point mutation. 
 Preparatory steps and FoldX calculations were executed using 
 run _ foldx _ multi.py . All 20 amino acids were considered at 
each site.  See   Note 1  for more information.   

   4.    Combine all favorable mutations (ΔΔ  ≤ 0) in a secondary 
palette. 
 FoldX outputs were parsed using  run _ foldx _ analysis.py .   

   5.    Repeat  steps 3  and  4  with alternate backbone scaffolds to 
account for slight variations in structure. 
 Potential backbone scaffolds 1BVW, 2BVW, 1GZ1, and 1OC5 
were identifi ed by BLAST searching against the Protein Data 
Bank (PDB). Each chain from within a structural model was 
considered a unique backbone scaffold.  See   Note 2 .   

   6.    For a conservative design, reduce the design palette to the 
intersection between the consensus analysis and the multiple 
structural modeling palettes (Table  1 ).
   The script  run _ consensus _ foldx.py  was used to identify the 
intersection between multiple design palettes. We chose to 
include mutations allowed in the consensus palette and by the 
majority of the folding free energy palettes (arbitrarily defi ned 
as 2/3).      

Lucas B. Johnson et al.
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  There are a few basic principles to consider when selecting parent 
proteins for recombination. First, parent proteins must have  similar 
structure in order to remain folded upon recombination. If struc-
tural models are unavailable, sequence identity can be used to esti-
mate structural similarity. Parent sequences with high sequence 
identity (60–80 % identity) generally have similar structure [ 43 ] 
and recombination will result in a high fraction of folded chimeras. 
In contrast, parent sequences with low sequence identity (<40 % 
identity) are much more likely to engender unfolded chimeras 
[ 32 ,  44 ,  45 ]. Second, critical residues should be conserved in each 
 parent. Catalytic active site residues may be considered critical, 
since variants that do not conserve these amino acids are very 
unlikely to retain enzymatic activity. Other sites that may be con-
sidered critical include disulfi de residues, sites for posttranslational 
modifi cation (e.g., glycosylation sites), and sites that could affect 
the protein folding mechanism such as  cis -prolines. 

 Combinatorial optimization software, such as SHARPEN 
(  www.sharp-n.org    ), can be used to search for low-energy sequences 
that meet these criteria [ 46 ,  47 ]. Alternate side chain conformations 
(rotamers) are included from the backbone-dependent Dunbrack 
rotamer library [ 48 ]. Numerous algorithms exist for fi nding low-
energy sequences and conformations. SHARPEN allows users to 
easily try a variety of stochastic algorithms (e.g., FasterPacker, 
SimulatedAnnealingPacker). Because these algorithms may yield 
different results for each repetition, repeated trials are useful for 
identifying mutations that are strongly or weakly preferred by the 
scoring function.

3.2  Phase II: Select 
Parent Sequences

    Table 1  
  Potential CBHII mutations at selected sites   

 WT A.A. 
 Consensus 
palette  FoldX palette 

 Intersection 
palette 

 Chosen 
A.A.  Rationale 

 N103  ANPSK  NP  NP  P  Allows h-bond between Y100 
and E154 (Fig.  2a ) 

 R123  AIKNRV  IKLMQRTV  IKRV  I  Computational model predicts 
favorable energy interactions 
(Fig.  2b ) 

 Q361  GKLQSV  ILMQV  LQV  Q  Mutating Q361 loses side chain 
backbone h-bond (Fig.  2c ) 

 K366  AEIKLNQST  FKLY  KL  K  K366L mutation introduces an 
unfavorable nonpolar surface 
residue (Fig.  2d ) 

Library-Scale Computational Protein Design
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    7.    Given a design palette, search for low-energy sequences. 
 We used the FasterPacker search algorithm in SHARPEN to 
identify low-energy candidates according to an all-atom Rosetta 
energy function [ 49 ]. This combinatorial optimization routine 
mimics the single-residue perturbation/relaxation method 
within the original description of the FASTER algorithm [ 41 ]. 
Briefl y, this method systematically attempts to surmount local 
minima during optimization by temporarily fi xing a single side 
chain in a particular conformation, and then assessing the effect of 
that perturbation combined with the relaxation/optimization 
of the neighboring side chains. Design calculations were per-
formed using  run _ conservative _ design.py . Separate calculations 
were run for the conservative and consensus design palettes. 
A total of 100 repetitions were performed for each design.   

   8.    Sort candidate designs to identify the lowest energy design 
(Fig.  1 ).
   The list of designed protein models generated by SHARPEN 
was sorted using  run _ sort _ by _ energy.py . For the conservative 
design, the lowest energy sequence was 38 Rosetta energy 
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  Fig. 1    Using a stochastic search algorithm in a design problem yields variants of 
differing energies. The distribution of potential low-energy candidates was sampled 
by performing 100 repetitions for each design palette. The starting energy score 
of 1OCN.pdb was −501 Rosetta energy units (REU). After repacking to optimize side 
chain conformations, the energy score was reduced to −807 REU ( triangle ). 
Searches based on the conservative design palette (intersection of consensus and 
FoldX methods) achieved an energy reduction of 38 REU ( rectangles ), while the 
larger consensus palette allowed an energy reduction of 72 REU ( rectangles )       
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units lower than the wild-type sequence. The larger consensus 
design palette allowed a slightly more favorable energy change 
of 73 energy units.   

   9.    Inspect designs to identify common mutations and stabilizing 
features (Fig.  2a–d ).
   Given the limitations of contemporary sampling and scoring in 
CPD methods, visual inspection of the prospective mutations 
can provide an additional opportunity to ensure a reasonable 
design. The script  master.py  incorporates many analysis func-
tions, including multiple sequence alignments ( run _ multiple _ se
quence _ alignment.py ), global energy comparisons ( run _ compare _ 
 pdbs.py ), and amino acid polarity comparisons ( run _ polarity _ of _ 
mutations.py ).  See   Note 3  for more information.    

  The fi nal conservative design contained a total of 58 mutations 
(84 % sequence identity to wild-type sequence), whereas the con-
sensus design contained 120 mutations (66 % sequence identity to 
wild-type sequence).  

  After parent sequences have been fi nalized, one must select the 
number of blocks to recombine. Block size infl uences library inter-
pretability and library size. We defi ne library interpretability as the 
extent to which it is possible to (1) rationalize the functionality of 
the library members in terms of structural detail and (2) deploy the 
experimental data to construct an improved, more predictive 
model for future designs. Small blocks can greatly improve library 
interpretability. Namely, small blocks have fewer mutations per 
block, allowing interesting changes in the protein fi tness to be 
tracked to the responsible mutations. For example, Heinzelman et al. 
were able to isolate an individual stabilizing mutation C404S from 

3.3  Phase III: 
Recombine Parent 
Sequences to Form 
a Library

  Fig. 2    Visual inspection of potential mutations. Example mutations include ( a ) W100Y and N103P, ( b ) R123I and 
S127K, ( c ) A313P and N361V, and ( d ) K366L.  See  Table  1  for discussion regarding which mutations were kept 
or reverted back to wild type       
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recombined CBH II parents because the cognate block contained 
only ten other mutations [ 50 ]. However, dividing a parent sequ-
ence into small blocks can greatly increase library size. Library size 
can be determined from the number of blocks and the number of 
parent sequences; for three parent sequences divided into four 
blocks each, the resulting library size will be 3 4  or 81 chimeras. 
If the aim is experimental screening of all library members, the 
library should be sized according to the screening capacity. 
Recombining more blocks, of smaller size, will increase the library 
size exponentially. 

 Given a range of desired block sizes, various structure-guided 
methods can be used to determine ideal recombination sites. 
Methods such as SCHEMA [ 51 ], SIRCH [ 52 ], and OPTCOMB 
[ 17 ] aim to minimize the number of disruptive amino acid con-
tacts in recombined chimeras. Using a slightly different method, 
FamClash combines clash detection with protein family sequence 
data to maximize chimera functionality [ 53 ]. The protocol in this 
chapter is built around the recombination as a shortest path prob-
lem (RASPP) method [ 54 ]. That said, the presented protocol 
could readily be adapted to incorporate an alternative method. 

 SCHEMA aims to maximize the number of folded library 
members by minimizing the number of novel amino acid interac-
tions (not found in parent proteins) [ 31 ,  55 ]. Interactions are 
defi ned as heavy atom pairs (excluding backbone O and N and all 
H) within 4.5 Å in a parent protein. A predictive SCHEMA energy 
score “E” is assigned to represent the number of novel contacts 
within each chimera. A diversity parameter “m” specifi es the 
 number of mutations between each chimera and the closest parent. 
The average SCHEMA energy and mutation level of all chimeras 
within a library are denoted <E> and <m>, respectively. While con-
sidering <m> does provide a means of favoring diverse libraries, it 
does not lend itself to the design of interpretable libraries. We 
therefore propose a third metric H  sbs  

max
  , which is the maximum 

Hamming number for a single block substitution. If a candidate 
library is dominated by one or a few large blocks H  sbs  

max
   will be large 

and the library will be less interpretable because the effect of chang-
ing the large blocks will include the aggregate effect of many muta-
tions. A small H  sbs  

max
   indicates that any block substitution that is 

found to be important is less likely to have an obscure origin. 
Multi-scale enzymology, tracing an important block effect to the 
role of individual mutations, will be more feasible for such a library. 

 The library containing the minimum number of nonnative 
amino acid interactions can be determined by formulating the 
library optimization as a dynamic programming problem [ 54 ]. By 
weighting edges of a graph according to a SCHEMA penalty, a 
shortest path can be chosen that contains optimum block crossover 
sites. Further restrictions can be placed on the search space, such as 
limiting crossover sites to locations where three or four nucleotides 
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are preserved in all parent sequences. Conserving nucleotides at 
crossover sites allows blocks to be recombined using type II restric-
tion enzymes [ 39 ].

    10.    Create a sequence alignment fi le based on the parent sequences. 
 A number of programs are available for generating sequence 
alignment fi les; we used ClustalOmega (  www.ebi.ac.uk/
Tools/msa/clustalo/    ) and converted the format using  run _ 
 convert _ msa _ format.py .   

   11.    Specify the library design parameters (Table  2 ).
   Block size is the primary parameter in recombination prob-
lems. However, the provided code is engineered for fl exibility. 
The user can specify how amino acid contacts are defi ned 
(minimum cutoff distances, and the heavy atoms considered), 
and which sites are feasible crossover locations (e.g., the num-
ber of nucleotides in overlap regions). These parameters can 
also be modifi ed in the settings fi le  raspp _ confi g.py .   

   12.    Identify potential crossover sites. For each candidate set of 
crossover sites, calculate <E>, <m>, and H  sbs  

max
  . 

 Running  run _ raspp _ curve.py  generated a list of optimum 
crossover sites. <E>, <m>, and H  sbs  

max
   were saved in an output 

fi le pareto.csv for each set of sites.   
   13.    Select a candidate library corresponding to a set of crossover 

sites. 
 Ideally, the selected library will have low <E>, high <m>, and 
low H  sbs  

max
  . Four potential CBHII libraries were identifi ed from 

a plateau region on the <E>/<m> Pareto front (Fig.  3a ). The 
<E>/ H  sbs  

max
   Pareto front (Fig.  3b ) allowed us to discriminate 

between these four candidate libraries and select a design that 
optimized diversity and interpretability. The fi nal design fea tures 
recombination sites 167, 244, and 345.

   Table 2  
  RASPP settings used for CBHII recombination   

 Parameter  Value  Description 

 pdbfi le  “1ocn.A.pdb”  Name of pdb fi le used to identify native contacts 

 Cutoff  4.5  Distance cutoff used to identify native contacts (Å) 

 Skipatoms  ['N', 'O', 'H']  Atoms to be skipped when identifying native contacts (skips N and 
O in backbone only) 

 Numxo  3  Number of crossover sites (three crossover sites generate four blocks) 

 Overhang  3  Number of conserved nucleotides required at crossover sites (can be 
0 if overhangs are unnecessary for library construction) 

 Min_lengths  Range (5,7)  Range of minimum block lengths 

Library-Scale Computational Protein Design
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  Fig. 3    Multiple design parameters can be considered when selecting a candidate 
library. ( a ) A Pareto front for four-block CBHII recombination with one wild- type 
and two conservatively designed parents ( squares ) has a similar average mutation 
level <m> and average SCHEMA energy <E> as four-block recombination with 
three wild-type parent sequences  Humicola insolens ,  Chaetomium thermophilum , 
and  Hypocrea jecorina  ( fi lled circles ). Promising candidate libraries have low <E> 
and high <m> ( fi lled squares ). ( b ) Maximum block-block hamming distance 
H  sbs  max   quantifi es the interpretability of each library. Four similar candidate libraries 
from the <m> Pareto front ( fi lled squares ) are easily distinguished by the H  sbs  max   
Pareto curve. ( c ) Within the library featuring crossover sites 167, 244, and 345, 
chimeras have a distribution of mutation level “m” and SCHEMA energy “E”       
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       14.    Inspect the prospective design.
    (a)    Generate histograms of chimera properties (Fig.  3c ). 

 Do outliers skew the library average properties? Do the 
distributions show that most library members have accept-
able diversity and predicted disruption? Distributions 
can range from normal to multimodal, depending on the 
parent proteins. Our selected library showed an approxi-
mately normal <E> distribution and a slightly skewed <m> 
distribution.   

   (b)     Inspect the crossover sites and structural features of each 
block (Fig.  4 ).
   A candidate library design can be inspected using PyMOL 
(  www.pymol.org    ). First load the parent pdb, and then run 
the corresponding showcontacts.pml script by typing 
@ showcontacts.pml .[ recombination sites ] into the PyMOL 
command line. Blocks are colored based on selected cross-
over sites.   

   (c)    Verify that the library is constructible. 
 Are the block sizes compatible with construction? Small 
DNA fragments could be diffi cult to purify using gel puri-
fi cation. If using a restriction enzyme-based construction 
protocol, ensure that the design produces the correct 
overhangs. If the candidate splice sites are not orthogonal, 
can alternate codons be used? If necessary, select a new 
candidate library from the Pareto front.     

 Another approach for selecting recombination crossover sites is 
to ignore the protein sequence and select sites solely on the basis of 
one protein structure. This alternate approach could be useful for 
preliminary library designs where CPD parent sequences have not 
yet been determined. In principle, structure- based crossover sites 
could be selected using a variety of approaches similar to domain 
detection algorithms [ 56 ]. However, to build a recombination library 
experimentally, the blocks should consist of contiguous residues. 

  Fig. 4    Structural blocks identifi ed using RASPP methods. Blocks are defi ned as 
follows: Block 1—residues 91–166 ( red ), Block 2—residues 167–243 ( blue ), 
Block 3—residues 244–344 ( green ), Block 4—residues 345–450 ( grey )       

 

Library-Scale Computational Protein Design

http://www.pymol.org/


142

Therefore, a simple expedient is to reuse the dynamic programming 
approach of RASPP, but to replace the SCHEMA penalty matrix 
with a simple binary contact map. The resulting crossover sites will 
be those that minimize the number of inter-block contacts (and 
therefore maximize the number of intra-block  contacts). We dem-
onstrate this alternative method using  run _ pick _ modules.py .   

   15.    Identify crossover sites for a range of minimum block lengths. 
 We used  run _ pick _ modules.py  to create a histogram of poten-
tial block crossover sites.   

   16.    Select a set of preferred crossover sites and inspect structural 
blocks. 
 In our example, sites 172, 266, and 369 were frequently cho-
sen as crossover sites (Fig.  5a ).  Pick _ modules.py  strongly favors 
certain crossover sites that minimize the number of inter-block 
contacts. Notably, these sites are not obvious from inspection 
of the protein structure or the contact map (Fig.  5b ).

         In any design cycle, the fi nal step involves constructing and 
 experimentally verifying the designs. Selected chimeras can be syn-
thesized using traditional molecular biology techniques [ 39 ] or via 
gene synthesis and assayed to determine the extent of folding or 

3.4  Phase IV: 
Evaluate the Library

  Fig. 5    ( a ) Scanning over a range of minimum block sizes from 5 to 90 creates a range of optimum block 
recombination sites. To identify preferred sites, all sites occurring in more than two unique libraries are con-
sidered. Recombination sites 172, 266, and 369 are preferred for a four-block CBHII library. ( b ) The contact 
map for 1OCN.pdb shows contacts characteristic of alpha helices and beta sheets. Ideal recombination blocks 
maximize intra-block contacts and minimize inter-block contacts       
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retained activity. In the CBHII example, an activity assay such as 
the Nelson-Somogyi reducing sugar assay could be performed at a 
variety of temperatures to test chimera function and stability [ 34 ]. 

 Experimental verifi cation of large libraries can be costly and 
time consuming. One approach is to experimentally screen a small 
percentage of the library and attempt to use the initial screening 
data to derive a predictive stability model applicable to the remain-
der of the library. Simple regression methods that model the stabil-
ity of each chimera as the sum of contributions from each block 
have been found to be predictive [ 57 ]. The surprising additivity 
of block contributions to stability can be attributed to sequence 
conservation among the parents and the partitioning of epistatic 
interactions into structural modules [ 45 ]. 

 To complete the iterative library design cycle, knowledge 
gained from experimental testing can be incorporated into sub-
sequent designs (Fig.  6 ). In addition to predicting the fi tness of 
library members, a trained regression model can also guide the 
refi nement of the CPD methodology. For example, if a particular 
sequence block from one of the CPD design variants was found to 
be highly destabilizing, the defi ciency in the CPD model can be 
investigated by reexamining the mutations that comprise that block.

4        Example 2: Localized Protein Design Libraries 

  Many properties of a protein depend critically on a subset of the 
amino acids. Protein-protein binding, cofactor binding, enzyme 
specifi city, and catalysis are all properties for which structural 
 models can enable hypothesis-driven engineering of specifi c resi-
dues. The applications for focused protein library design are nearly 
limitless. Below, we briefl y survey a selection of such applications 
before presenting an example protocol. 

4.1  Introduction

Wild Type
Design 1

Design 2

Parent Enzymes Recombination Library

AssayBlock Regression Analysis

34  = 81 possible chimeras
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  Fig. 6    Library design is an iterative cycle that consists of parent selection, block 
recombination, experimental testing, and validation of biophysical models       
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  Protein-protein interactions (PPIs) are fundamental to many of the 
biomolecular recognition events that drive biological processes. 
However, understanding PPIs is diffi cult because they typically 
involve many weak noncovalent bonds over large surfaces. The 
biophysical principles (e.g., extent of buried nonpolar surface area) 
underpinning protein-protein interfaces vary [ 58 ], and not all 
 participating amino acids will contribute equally to the binding 
affi nity [ 59 ]. 

 Just as understanding PPIs plays a key role in molecular  biology, 
the ability to control PPIs is key for engineering new  therapeutic 
biomolecules. Baker and co-workers demonstrated an effective 
protocol de novo protein inhibitor design with a protein that binds 
an infl uenza virus stalk site [ 60 ,  61 ]. Engineering new PPIs as a 
CPD problem extends the methods deployed for monomeric CPD 
[ 10 ,  62 ]. Combinatorial optimization routines are applied to the 
interfacial amino acids to optimize a scoring function that includes 
van der Waals, hydrogen bonding, and electrostatic interactions 
with the partner protein. Notably, alternate approaches to engineer 
interactions can circumvent the need to engineer large comple-
mentary surfaces. Examples include the addition of shared metal-
binding sites [ 63 ] or disulfi de bonds [ 64 ]. 

 An improved understanding of PPIs could also be useful for 
downstream problems in biotherapeutic development. For exam-
ple, prevention of aggregation is important to extending the shelf 
life of therapeutic proteins. Unwanted PPIs could be destabilized 
through site-specifi c mutations of existing complementary inter-
faces or electrostatic repulsion via supercharging [ 4 ,  62 ,  65 ].  

  Binding of metals and small organic molecules is necessary for 
many proteins to function. Mutations of amino acids in the hydro-
phobic protein core can result in new cavities for small molecules 
to bind. For small nonpolar molecules, it is desirable to create a 
hydrophobic local environment around the cavity. Hecht and co- 
workers demonstrated that the simple truncation of Phe to Ala in 
the de novo protein S-824 resulted in the ability to bind small 
aromatic compounds [ 66 ]. Binding polar molecules and metals is 
more challenging because it requires the installation of comple-
mentary electrostatic interactions and hydrogen bonds. Notably, 
Matthews and co-workers have created cavities in T4 lysozyme that 
can bind the polar ligands pyridine, phenol, and aniline [ 67 ].  

  Engineering organisms to produce higher yields of products via 
knockouts of competing metabolic pathways can create cofactor 
imbalances. Shifting cofactor specifi city may resolve this problem 
by substituting the limiting cofactor with one that is in excess. For 
example, in attempts to anaerobically produce isobutanol in 
 Escherichia coli  via the Ehrlich pathway, NADPH-dependent 

4.1.1  Protein-Protein 
Interface Design

4.1.2  Binding 
Small Molecules

4.1.3  Changing 
Cofactor Specifi city
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enzymes were engineered to shift the specifi city preference to 
NADH. The best variant of the fi nal library exhibited a specifi city 
of 185:1 for NADH to NADPH, a 54,000-fold change from 
the original variant. By completely removing the dependence 
on NADPH, isobutanol titres at 100 % theoretical yield were 
achieved [ 68 ].  

  A widely used approach for introducing amino acid diversity at 
a particular site is through the use of degenerate codons [ 69 ]. 
Degenerate codons are sets of oligonucleotides that code for 
 multiple amino acids. The standard degenerate codon naming con-
vention used in this text is presented in Table  3 . Routine site satu-
ration mutagenesis protocols often employ the degenerate codon 
NNK, which codes for all 20 amino acids [ 70 ]. While site satura-
tion mutagenesis is simple and effi cient, combinatorial explosion 
limits the number of sites that may be targeted. As the number 
of saturation sites increases, it rapidly becomes infeasible to trans-
form, isolate, and thoroughly screen the resulting library. Even with 
a very-high-throughput screen, allowing for screening of 10 8 –10 11  
targets [ 71 ], site saturation mutagenesis can only be performed 
on eight residues. Furthermore, NNK encodes the amino acids 
unevenly (Fig.  7 ). The resulting bias against rare amino acid com-
binations increases exponentially with the number of sites.

    The limitations of site saturation mutagenesis motivate the 
development of more effi cient methods that eschew brute force 
search. Table  4  illustrates various useful degenerate codon alterna-
tives to NNK. These sets allow for introduction of diversity at a 

4.1.4  Degenerate 
Codons

   Table 3  
  Translation of degenerate codon base to nucleotides   

 Degenerate base  Actual base 

 N  A or C or G or T 

 B  C or G or T 

 D  A or G or T 

 H  A or C or T 

 V  A or C or G 

 K  G or T 

 M  A or C 

 R  A or G 

 S  C or G 

 W  A or T 

 Y  C or T 
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  Fig. 7    Selection of the codon NNK unevenly encodes the amino acids. NNK also 
encodes for a stop codon, which will result in a nonfunctional variant       

   Table 4  
  Examples of degenerate codon to amino acid subset   

 Codon  Type  Amino acids  Stop codons  Unique codons 

 NNK  All 20 A.A.  All 20  TAG  32 

 DVT  Hydrophilic  A,C,D,G,N,S,T,Y  None   9 

 NVT  Charged, hydrophilic  C,D,G,H,N,P,R,S,T,Y  None  12 

 VVC  Hydrophilic  A,D,G,H,N,P,R,S,T  None   9 

 NTT  Hydrophobic  F,I,L,V  None   4 

 TDK  Hydrophobic  C,F,L,W,Y  TAG   6 

 TTN  Hydrophobic  F,L  None   4 

 (DSC/DST/DSY)  Small  A,C,G,S,T  None   5 

 GMT  Single-mutation 
alanine scanning 

 A,D  None   2 
 GMA  A,E  None   2 
 GST  A,G  None   2 
 SCA  A,P  None   2 
 KCC  A,S  None   2 
 RCT  A,T  None   2 
 GYT  A,V  None   2 
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site, but limit the mutations to a set of hypotheses. The foremost 
factor when considering a degenerate codon is the resulting set of 
amino acids. A secondary factor to consider is bias. For example, 
Fig.  8  illustrates how the set of amino acids containing exclusively 
Phe and Leu can be encoded by eight degenerate codons, with 
varying bias. Only the degenerate codons TTK and TTN encode 
Phe and Leu in equal proportions.

       Due to the problems associated with site saturation mutagenesis, 
semi-rational methods have been developed for “intelligent” picking 
of codons to optimize either library size or amino acid ratios [ 72 ,  73 ]. 
We present a method below that uses an interactive python script 
( codons.py ) for selecting site-specifi c degenerate codons.  Codons.py  
allows a user to consider how alternate degenerate codons will drive 
the distribution of amino acids at a particular site, and to consider 
the library size and screening requirements that result from degener-
ate codons at multiple sites. To focus the discussion we will consider 
an illustrative example consisting of the cofactor switch of NADPH 
to NADH in ketol-acid reductoisomerase (KARI) [ 68 ,  74 ].  

  We will assume the availability of a structural model. The identifi -
cation of specifi c target residues (e.g., active site, cofactor-binding 
site) can be accomplished via visual inspection in PyMOL [ 75 ] 
or via computational algorithms [ 76 ,  77 ]. Once the positions are 
selected, continued visual inspection will inform the decision of 
whether to use site saturation mutagenesis or a more limited subset 
of amino acids. Just as with site selection, the amino acid design 
palette can be based on calculations [ 78 ] or through biophysical 
intuition alone. The PyMOL mutation tool is an excellent prospec-
tive modeling technique for inspecting candidate mutations, since 
it allows rotamer sampling and indicates steric clashes. Thus visual 
inspection of candidate mutations may elucidate amino acids that 
are too large for the site or cannot avoid a detrimental interaction 
with existing amino acids/cofactors. Alternately, the scan of poten-
tial mutations and the conformations thereof can be automated. 

4.2  Approach

4.3  Phase I: 
Identifi cation 
of Site Mutations

Phe and Leu Codons

Codon
L:F

YTD
5:1

YTN
6:2

YTK
3:1

YTB
4:2

TTD
2:1

TTN
2:2

TTK
1:1

TTB
1:2

  Fig. 8    Visualization of amino acid bias for codons exclusively encoding for L and F. Codon optimization must be 
performed to discriminate between codons encoding for similar amino acid ratios (i.e., 2:4 and 1:2)       
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Regardless, a list of favorable and unfavorable amino acids should 
be tabulated prior to use of  codons.py . Under most circumstances, 
it is highly recommended that the wild-type amino acid be included 
in the design palette. One benefi t is practical: including the wild- 
type amino acid will increase the fraction of the library that retains 
structure and function. Another benefi t is philosophical: if the wild-
type amino acid is an option for each design position, then the 
wild-type sequence should be a member of the library. With suffi -
cient screening, such a library should yield this positive control. 

 In our cofactor switch example, the structure of the IlvC  E. coli  
(without cofactor) was aligned to that of KARI spinach bound 
with NADPH. Five residues were identifi ed for mutagenesis 
through proximity to the homologous NADPH position: R68, 
A71, R76, S78, and Q110. Residues R68, A71, R76, and S78 
were selected due to their interactions with the 2′ phosphate group 
of the bound NADPH. Q110 was selected for its potential to 
 orient the cofactor through interaction with the adenine moiety. 

 A strategy for shifting specifi city from NADPH to NADH is to 
disrupt the salt bridge between positively charged residues inter-
acting with the NADPH 2′ phosphate by mutations to negatively 
charged aspartic or glutamic acids [ 79 ]. Figure  9  illustrates how 
unfavorable interactions with NADPH could be formed via muta-
genesis of each of the identifi ed residues to Asp. Introducing 
 negatively charged side chains can lower NADPH affi nity and is 
sometimes suffi cient to switch the cofactor specifi city in favor of 
NADH [ 80 ]. However, improved specifi city for NADH is often 
accompanied by loss of activity. As seen in Fig.  9 , mutating S78 not 
only disrupts the salt bridge of NADPH 2′ phosphate, but it also 
might create a favorable hydrogen bond with the NADH hydroxyl 
group. We will use sites R68, R76, and S78 as examples in the 
degenerate codon design protocol (Table  5 ).

       Codons.py  is a user-friendly tool for interactively selecting degenerate 
codons. The primary function of  codons.py  is to rank all prospective 
codons according to user-provided design goals. A set of required, 
taboo, preferred (“good”), and penalized (“bad”) amino acids are 
provided either as arguments or interactive inputs to the main func-
tion. Subsequently, simple scoring methods rank the candidate 
codons that best fulfi ll the design objectives. Predefi ned amino acid 
sets can easily be specifi ed and incorporated into the code. Aliphatic, 
hydrophobic, hydrophilic, acidic, and basic amino acid sets are 
 predefi ned and can be input in place of individual amino acids. As 
outlined in detail below, scoring function options include the num-
ber of preferred amino acids encoded by a codon, the number of 
unique preferred amino acids encoded by a codon, and percentage 
of  preferred amino acids out of amino acids in  distribution encoded 
by a codon. Despite the simplicity of the scoring functions, the 
results nonetheless facilitate the sifting of many codon possibilities. 

4.4  Phase II: 
Codons. py
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The scoring functions could be easily adapted if a more sophisticated 
scoring scheme is desired. The method for running  codons.py  is as 
follows:

    1.    Run  codons.py  interactively by entering the following into the 
command line: python codons.py (if manual usage is desired, 
enter python –i codons.py manual;  see   Note 4  for examples of 
manual input).   

   2.    The program will interactively ask for arguments (the help 
screen can be accessed at anytime by entering “?”):

    (a)    Enter required amino acids. 
 Set of amino acids that  must  be encoded. The wild-type 
amino acid is highly recommended for this set.   

   (b)    Enter good amino acids. 
 Set of amino acids that give a positive score if encoded.   

   (c)    Enter bad amino acids. 
 Set of amino acids that give a negative score if encoded.   

   (d)    Enter taboo amino acids. 
 Set of amino acids that are not allowed to be encoded. For 
example, stop codons (denoted by an underscore) are typi-
cally designated as taboo.   

  Fig. 9    Visualization of structural alignment between  E. coli  IlvC and Spinach KARI with NADPH bound in 
the active site. ( a ) Identifi cation of R68, A71, R76, S78, and Q110 as potential residues for mutation in IlvC. 
( b ) Depiction of favorable interaction created by S78D mutation and steric clashes created by Q110Y mutation. 
( c ) Depiction of potential favorable mutations. ( d ) Depiction of unfavorable interactions from mutations to large 
residues       
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   (e)    Enter desired scoring function. 
 Specify how to score the codons. The default scoring 

scheme is “distribution.”
 ●     Set : In this mode, candidate degenerate codons will be 

assessed using the unique set of encoded amino acids. 
Scoring is performed by adding 1 if the amino acid is 
in the preferred set and subtracting 1 if the amino acid 
is in the bad set. A penalty of −1,000 is included if the 
amino acid is taboo or if a required amino acid is not 
encoded by the codon.  

 ●    Distribution : In this mode, candidate degenerate 
codons will be assessed using the distribution of amino 
acids encoded by each codon rather than just the set of 
unique amino acids. Each amino acid in the codon 
outcome distribution is scored. Scoring is performed 
by adding 1 if the amino acid is in the preferred set and 
subtracting 1 if the amino acid is in the bad set. If the 
codon includes a taboo amino acid or lacks a required 
amino acid, the score decreases by 1,000.  

    Table 5  
  Hypotheses for NADPH cofactor switch example   

  Target Residue    Required    Preferred    Rationale  

 R68  R  E,D  Unfavorable interaction with 2′ phosphate group NADPH, 
potential hydrogen bonding with NADH 

 A71  A  E,D  Unfavorable interaction with 2′ phosphate group NADPH, 
potential hydrogen bonding with NADH 

 R76  R  E,D  Unfavorable interaction with 2′ phosphate group NADPH, 
potential hydrogen bonding with NADH 

 S78  S  E,D  Unfavorable interaction with 2′ phosphate group NADPH, 
potential hydrogen bonding with NADH 

 Q110  Q  –  No clear preference. Q110 mainly provides steric interaction 

  Target residue    Taboo    Disfavored    Rationale  

 R68  Stop  H,K  Favorable interaction with 2′ phosphate on NADPH 
 F,W,Y  Size 

 A71  Stop  P,G,S,T  Disfavored in alpha helix 
 F,W,Y  Size 

 R76  Stop  H,K  Favorable interaction with 2′ phosphate on NADPH 
 F,W,Y  Size 

 S78  Stop  H,K  Favorable interaction with 2′ phosphate on NADPH 
 F,W,Y  Size 

 Q110  Stop  P,G,S,T  Disfavored in alpha helix 
 F,W,Y  Size 
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 ●    Percent : In this mode, candidate degenerate codons 
will be assessed by scoring the percentage of the out-
come amino acids (including the distribution bias) 
that appear in the “good” set. If required amino acids 
are not included in the distribution or if taboo amino 
acids are included a penalty of −1,000 is added.      

   (f)    Specify output cutoff (integer). 
 Option that only prints codons that score above a value.   

   (g)    Specify the output fi le name. 
 Option that prints output to specifi ed fi le name.       

   3.    Following user input, a table of the ten highest scoring codons 
will be displayed. If more results are desired, answer “y” to the 
prompt and type in the desired number of results.   

   4.    After analysis of the table, the user is prompted to select a 
degenerate codon. Guidelines for selecting degenerate codons 
are presented in Phase III below.   

   5.    Once a codon is selected for the site, the program asks if another 
site is desired. If selection of a degenerate codon for another 
site is desired, answer “y” and  steps 1 – 4  will be repeated.   

   6.    As the user selects degenerate codons for multiple sites, a 
multi- site library is defi ned. Key parameters for a multi-site 
library include the number of unique variants and the bias in 
the amino acid distributions at the design positions. The 
screening (number of random clones) necessary to experimen-
tally observe most of the library (e.g., 95 %) can be estimated 
using random sampling with the function library_sampling 
defi ned within  codons.py .    

   Codons.py  was run for each mutation site identifi ed in Phase I using 
hypotheses discussed in Table  5 . Sample output from running 
codons.py for site A71 is represented in Table  6 .

     Although the script  codons.py  is interactive, the fi nal selection of a 
particular codon is manual. On the fi rst attempt at selecting a 
codon, the ranked candidates should be inspected to determine the 
frequency of preferred amino acids to non-preferred amino acids 
( see   Note 5 ). If the preferred amino acids do not appear frequently 
enough in the codons, consider rerunning  codons.py  with the pre-
ferred amino acid in the required list. The opposite is true as well; 
if a “bad” amino acid is appearing at too high of a frequency, con-
sider moving that amino acid to the taboo list. Another key aspect 
of the interactive codon selection is the process of refi ning the 
design criteria in the light of the candidate codons. Typically, the 
candidate list will include codons that result in larger and smaller 
sets of amino acids, leading naturally to questions of screening 
capacity. Also, by considering the list of candidates, other trade- 
offs are likely to surface. Potentially, one might be selecting 
between a panel of amino acids that includes all of the desired 

4.5  Phase III: Codon 
Selection
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amino acids but also includes an amino acid that is likely to be 
incompatible with the protein conformation. The user must decide 
if that codon is preferable to an alternative that avoids the destabi-
lizing option but covers fewer of the favored amino acids. At this 
stage, it is worth reconsidering how the amino acids that appear in 
favored codons, but were neither assigned as “good” or “bad,” are 
likely to perform. We suggest evaluating amino acids interactively 
in PyMOL using the Mutagenesis wizard with the following check-
list in mind:

    1)    Does the mutation clash with the protein backbone?   
   2)    Does the mutation clash with existing side chains?
    (a)     If there is a clash with a neighboring side chain, can the 

neighbor move?       

   Table 6  
  Sample  codons.py  output for NADPH cofactor switch example   

 Score  Amino acid distribution  Codons 

 4  AAAADDEEVVVV  GHN 

 4  AAAADDEE  GMN 

 3  AAADEE  GMD/GMV 

 3  AAADDEVVV  GHB/GHH 

 3  AAADEEVVV  GHD/GHV 

 3  AAADDE  GMB/GMH 

 2  AAEEVV  GHR 

 2  AAAADDEEKKNNTTTT  RMN 

 2  AADD  GMY 

 2  AAADDEKNNTTT  RMB/RMH 

 2  AADDVV  GHY 

 2  AADDIINNTTVV  RHY 

 2  AADEVV  GHK/GHM/GHS/GHW 

 2  AAADDEIIIKNNTTTVVV  RHH 

 2  AADDNNTT  RMY 

 2  AAAADDEEIIIKKMNNTTTTVVVV  RHN 

 2  AAEE  GMR 

 2  AADE  GMK/GMM/GMS/GMW 

 2  AAADDEIIKMNNTTTVVV  RHB 

 1  ADNT  RMC/RMT 

Lucas B. Johnson et al.



153

   3)    Does the mutation clash with an existing water molecule?
    (a)     Can the water molecule be displaced without the loss of 

favorable interactions?       
   4)    Does the mutation clash with a bound substrate?   
   5)    If favorable interaction with a bound substrate is a design cri-

terion, can a candidate mutation make favorable interaction(s) 
considering size and hydrogen bonding geometry?   

   6)    If an unfavorable interaction with a bound substrate is a design 
criteria, can a candidate mutation avoid making the unfavor-
able interactions?    

  After running  codons.py  for each mutation site, a list of opti-
mum codons was identifi ed (Table  7 ). Given the availability of a 
high-throughput screen to determine NADPH/NADH binding 
(fl uorescence of NADPH/NADH) [ 68 ], codons encoding high 
diversity at sites R68 and R76 were allowed. While A71 can accom-
modate many mutations, the palette was restricted to favor diver-
sity at the neighboring design positions. As a result, codons 
encoding only the hypothesized residues and the WT were selected. 
Considering the strong preference for the S78D mutation, D was 
included in the required set for  codons.py . The “percent” scoring 
function was used to identify codons that provided the highest 
percent coverage of D and E in the resulting amino acid distribu-
tions. Finally, due to lack of clear hypotheses for site Q110, only 

   Table 7  
  Favorable codons for NADPH cofactor switch example   

 Site  Candidate codons  Amino acid distribution 

 R68/R76  VDN  DDEEGGGGHHIIIKKLLLLMNNQQRRRRRRSSVVVV 

 RRN  DDEEGGGGKKNNRRSS 

 RNN  AAAADDEEGGGGIIIKKMNNRRSSTTTTVVVV 

 A71  GMN  AAAADDEE 

 GMK/GMM/GMS/GMW  AADE 

 GMD/GMV  AAADEE 

 S76  RNN  AAAADDEEGGGGIIIKKMNNRRSSTTTTVVVV 

 RRK,RRM,RRS,RRW  DEGGKNRS 

 RRC,RRT  DGNS 

 Q110  VWN  DDEEHHIIIKKLLLLMNNQQVVVV 

 VWH  DDEHHIIIKLLLNNQVVV 

 VWR  EEIKKLLMQQVV 
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disfavored amino acids were specifi ed. Codons at Q110 were thus 
ranked highly if they encoded high diversity and excluded large 
residues.

   From the selection of the top candidates, fi nal codons were 
selected as presented in Table  8 . Depending on the degenerate 
codon candidates, codon optimization for the selected expression 
system (e.g., avoiding rare codons) could help discriminate between 
candidates that result in different distributions of the same amino 
acids (e.g., AAAALL and AAL) [ 81 ].

     Commercial oligonucleotide providers (e.g., Integrated DNA 
Technologies, IDT) can synthesize primers with a mixture of wild- 
type and non-wild-type nucleotides. If only a single-mutation site 
or multiple-mutation sites in close proximity are desired, introduc-
tion of a degenerate codon can be accomplished with a single PCR 
[ 82 ]. However, if the desired sites are distant from one another, 
more extensive protocols must be used [ 70 ]. If the desired 
 distribution of amino acids is not possible by a degenerate codon, 
mixing oligonucleotides is an alternative option [ 78 ].   

5    Notes 

     1.    Numerous programs exist for estimating folding free energy 
change, including FoldX, I-Mutant2.0, Eris, and sMMGB 
[ 83 – 86 ]. We chose the commonly used, semiempirical FoldX 

4.6  Phase IV: 
Experimental 
Synthesis

   Table 8  
  Final codon selection for NADPH cofactor switch example   

 Site  Final codon  Distribution  Rationale 

 R68/R76  RNN  AAAADDEEGGGGIIIK
KMNNRRSSTTTTVVVV 

 (1) Introduction of diversity to these sites 
with good representation of preferred 
mutations (11 % frequency). (2) No 
large amino acids included in set. (3) 
Small frequency of bad amino acids 

 A71  GMK,GMM, 
GMS,GMW 

 AADE  (1) Lowest A:D:E ratio that encodes 
exclusively for A,D,E. (2) Limited 
diversity at this site is not unfavorable 
due to high diversity at other sites. (3) 
WT contributes to 50 % of encoded 
distribution—potentially helpful due to 
high diversity at other sites which might 
require A71 to avoid steric clashes 

 S78  RRK,RRM,
RRS,RRW 

 DEGGKNRS  Favorable interaction with hydroxyl group 
appears at a high frequency (25 %) 

 Q110  VWN  DDEEHHIIIKKLLLLMN
NQQVVVV 

 (1) Good diversity of smaller amino acids. 
(2) No large amino acids included in set 
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for CBHII calculations. Estimating folding free energy 
changes for 20 amino acids at 358 sites created a computa-
tionally intensive calculation. Computing all FoldX calcula-
tions for six different backbones took approximately 3 days on 
a 2.6 GHz CPU.   

   2.    Traditional CPD relies on fi xed-backbone combinatorial opti-
mization of side chain positions and amino acid identity. 
However, small differences in the backbone position can make 
a large difference in the ability of amino acids to be favorably 
placed at a given design position. Using an ensemble of rea-
sonable backbone models provides a more realistic approxi-
mation of the protein backbone fl exibility. This strategy is a 
partial substitute for true fl exible-backbone design algorithms 
[ 24 ,  87 ].   

   3.    In inspecting the designs, we checked for the loss of hydrogen 
bonds or the addition of questionable nonpolar surface muta-
tions. Detailed pairwise energy comparisons ( run _ evaluate _ 
mutations.py ), combined with visual inspection, constituted 
the additional analysis of each proposed mutation. If we could 
not identify the rationale for a mutation chosen by SHARPEN, 
we performed a secondary search with additional rotamers 
near the questionable residue ( run _ questionable _ mutations.py ). 
All rotamers with chi angles within two standard deviations of 
the default Dunbrack rotamer library angles were included. 
Mutations that were still considered favorable in this secondary 
search were included in the fi nal design. Otherwise, we used 
 run _ mutate _ to _ wt.py  to revert mutations back to the wild-type 
amino acid variant.   

   4.    Manual input of arguments in codons.py can be accessed by 
typing the following into the command line:  python  – i codons.
py manual . Manual input allows quick and easy iterations for 
experienced users. Example inputs are given below for the 
identifi cation of small replacements for leucine: 

 pickcodons(good='AGVLIST', bad='WYFHRKED', 
taboo='_', required='L', scoring='percent', outfi le=codons.txt') 

 librarysize=compute_library_size('stringofcodons')   
   5.    As a general rule, it is best to start with soft constraints on 

required and taboo mutations (i.e., only include WT in 
required and “_” in taboo). After evaluation of results, if a 
suitable distribution is not located, or visual inspection mer-
its further discrimination for or against certain amino acids, 
then mutations may be moved into the required or taboo 
categories.   

   6.    If a desired amino acid distribution can be encoded by multiple 
codons, codon optimization can be performed to discriminate 
between codons that encode for similar ratios.         
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