
129

Valentin Köhler (ed.), Protein Design: Methods and Applications, Methods in Molecular Biology, vol. 1216,
DOI 10.1007/978-1-4939-1486-9_7, © Springer Science+Business Media New York 2014

 Chapter 7

 Methods for Library-Scale Computational Protein Design

 Lucas B. Johnson , Thaddaus R. Huber , and Christopher D. Snow

 Abstract

 Faced with a protein engineering challenge, a contemporary researcher can choose from myriad design
strategies. Library-scale computational protein design (LCPD) is a hybrid method suitable for the engi-
neering of improved protein variants with diverse sequences. This chapter discusses the background and
merits of several practical LCPD techniques. First, LCPD methods suitable for delocalized protein design
are presented in the context of example design calculations for cellobiohydrolase II. Second, localized
design methods are discussed in the context of an example design calculation intended to shift the sub-
strate specifi city of a ketol-acid reductoisomerase Rossmann domain from NADPH to NADH.

 Key words Protein library design , Codon selection , Protein engineering , Computational protein
design , Consensus analysis , Recombination , SCHEMA

1 Introduction

 Library-scale design includes many divergent methods, ranging
from random mutagenesis (e.g., error-prone PCR) to computa-
tional protein design. Library-scale design methods strive to achieve
three goals: produce many diverse solutions, maintain folding and
functionality in the majority of variants, and maximize ease of
interpretation.

 In practice, directed evolution (DE) is a remarkably effective
library design method; many protein engineering challenges are
readily solved via the stepwise accumulation of random mutations
[1 , 2]. Moreover, whereas a structure is typically a prerequisite for
computational protein design (CPD), no special insight into the
structure and function of the protein is required for DE methods.
However, the search space of all random mutations is enormous;
even a high-throughput assay can only sample a tiny fraction of
the sequences within a few mutations from a parent sequence.
Interpreting randomly accumulated mutations can also be diffi cult.
Only in rare instances can favorable mutations be rationalized from
available structural models.

130

 Compared to DE, CPD methods can consider an astronomical
number of candidate sequences, including sequences that vary sig-
nifi cantly from the initial sequence. CPD can result in impressive
changes to the stability [3], aggregation-resistance [4], specifi city
[5], or enzymatic activity [6 , 7], to name a few examples. Despite
these successes, the foundation of CPD relies upon approximate
models of protein structure and stability. Defi ciencies in the scor-
ing function or in the sampling of potential conformations can
result in unfolded or inactive design variants [8]. Experimental
testing of CPD sequences provides a referendum on the underly-
ing CPD methodology; however, in practice it is diffi cult to learn
from the success or failure of a single design attempt. An unfolded
design variant indicates a model defi ciency, but usually does not
reveal an unambiguous remedy.

 The philosophies behind these different methods are diver-
gent: a pure DE scheme can be effective in the absence of protein
structure and function information, while an accurate model
of protein structure and function is the foundation and goal of
CPD. Despite these philosophical differences, the gap between DE
and CPD can be quite small in practice. For instance, a design cycle
might start by using CPD to identify a low-energy sequence and
progress to DE methods [9 – 11]. Combining the rational methods
of CPD with DE screening methods balances search size with
diversity. Rather than a search based on a large number of blind
guesses (random mutations), one can formulate a search over a
discrete set of hypotheses. Library-scale computational protein
design (LCPD) methods combine rational and random methods
to create a discrete set of hypothesized variants. Ideally, LCPD
results in interpretable libraries that (1) are enriched for improved
variants and (2) provide useful information for predicting sequence-
structure- function relationships.

 The appropriate choice of method will depend on the design
goal at hand. Our fi rst example discusses LCPD strategies and
tools suitable for altering delocalized protein properties. Delo-
calized properties, such as stability or solubility, are the result of
numerous amino acid interactions across a protein. Our second
example focuses on protein properties that are localized to a dis-
tinct region. Signifi cant variation within localized regions, such as
binding pockets or protein interfaces, can create libraries with
varying substrate specifi city or enzymatic activity.

2 Materials

 All computational scripts mentioned in this example are available
at www.sharp-n.org . SHARPEN is an open-source C++/Python
software library intended to facilitate the development of new
algorithms for protein modeling and design.

Lucas B. Johnson et al.

http://www.sharp-n.org/

131

3 Example I: Delocalized Design Libraries

 Diverse libraries sample a broad range of sequence space, farther
afi eld from an initial sequence, and are therefore more likely to
contain signifi cant variants of interest. However, when construct-
ing a library of protein sequences, a trade-off is established between
sequence diversity and library stability. Library stability is refl ected
in the properties of the individual sequences in two ways. First, a
stable library will have few unfolded sequences. Second, the indi-
vidual folded sequences within the library will be stable and func-
tional. While allowing a wide range of mutations within a library
greatly increases diversity, many mutations will decrease library stability
[12]. When available, structural models can guide the selection of
stable sequences by providing insight into which mutations are
likely to be destabilizing [13].

 Current library design methods use sequence and structure
information to predict potentially stabilizing mutations. Hecht and
co-workers have demonstrated the ability to design de novo pro-
teins with binary patterning of polar and nonpolar amino acids
[14 – 16]. Alternatively, the palette can be designed to ensure that
mutations are compatible with the neighboring amino acids, con-
sidering multiple amino acid properties, such as volume, charge,
and hydrophobicity [17]. Furthermore, information from multiple
sequence alignments can be used to identify tolerated or favored
mutations at each site [18 – 21]. Structural models can still be useful
in conjunction with sequence-based design methods. For example,
a structure can be used to refi ne ambiguous portions of the align-
ment (i.e., insertion/deletion sites) and to determine if certain
residues (e.g., Pro, Trp) are likely to be incompatible with the pro-
tein backbone or the neighboring amino acids.

 If detailed structural models are available, combinatorial CPD
methods can be used. These methods provide each amino acid
with multiple side chain conformations (rotamers) and provide
each design site with multiple candidate amino acid identities [22 ,
 23]. The design calculation is thus reduced to the combinatorial
optimization problem of fi nding a rotamer combination of low
energy. This problem can be solved using stochastic methods such
as simulated annealing. The identifi cation of the global minimum
energy combination can also be achieved using methods such as
dead-end elimination [24].

 To obtain a library of designed sequences, a simple expedient is
to repeatedly execute a stochastic design method or to design com-
binatorial mutation libraries to capture the sequence variation
found within the pool of design solutions [25 – 27]. Such a library,
however, will vary largely at sites that the CPD methods are found
to be of marginal importance. Furthermore, if the CPD method
confi dently selects an unfavorable mutation (a systematic error), the

Library-Scale Computational Protein Design

132

poor choice could be present in all members of a library. Such an
error could cause the entire library to be unfolded or nonfunc-
tional. For example, a CPD algorithm with insuffi cient weight for
van der Waal interactions might “overpack” the protein core, result-
ing in a molten globule sequence.

 In contrast, an interpretable library of CPD variants could
be designed to explicitly uncover and overcome systematic errors.
A typical CPD scoring function assesses amino acid interactions as
a series of contributions from hydrogen bonding, hydrophobic
packing, van der Waals interactions, salt-bridge interactions, and
other terms. A favorable design library would serve as a training set
suitable for “learning” the weights associated with these different
types of interactions. Whereas a CPD method might predict a
 stabilizing surface salt-bridge, a good library design would test this
hypothesis. For example, if the library contains variants with the
wild-type interaction, variants with the proposed salt-bridge, and
variants with only one partner substituted, there is the possibility
of determining the effective contribution of the salt-bridge. The
concept is similar to the idea of a double-mutant cycle, although in
this case the interaction is assessed in the presence of potentially
confounding background sequence variation. If the library con-
tains many such examples, the energy function could be trained to
better predict the importance of salt-bridge interactions.

 Recombination can be used to generate libraries that reduce
the trade-off between library diversity and library stability;
sequences generated through recombination are much more likely
to retain stability than comparably diverse sequences generated
through mutagenesis [28]. Similar to DNA shuffl ing [29 , 30], site-
directed recombination diversifi es a library by substituting sequence
blocks that contain multiple mutations. Recombination of homol-
ogous wild-type sequences has proven to be an effective library
design method for a variety of protein folds including beta-
lactamase [31], cytochrome P450 [32], arginase [33], and several
cellulase families [34 – 37].

 Recombination need not be limited to natural sequences;
homologous parent sequences identifi ed from directed evolution
or CPD methods could also be recombined to create a diverse
library. In the example below, we recombine one wild-type parent
with two computationally designed sequences. Incorporating com-
putational designs into a recombination library allows the designer
to specifi cally target a library property of interest (e.g., stability at
low pH). Energy scoring functions attempt to incorporate many
global stability factors, including hydrogen bonds, hydrophobic
interactions, packing effi ciency, and conformational strain. By sear-
ching through a large sequence space, computational designs may
identify improved variants that have never occurred in nature. As
discussed above, CPD variants are likely to include design errors.
Recombining blocks from CPD variants with a wild-type sequence

Lucas B. Johnson et al.

133

will allow the dissection of stabilizing and destabilizing sequence
motifs. Constructing a chimera sequence that incorporates suc-
cessfully designed blocks from the CPD sequence and leaves out
blocks corresponding to CPD failures is likely to result in chimeras
that meet the design goals.

 In the example below, we demonstrate how LCPD methods
might be applied with a model target, cellobiohydrolase II (CBHII)
from Humicola insolens (PDB entry 1OCN). In the fi rst two sec-
tions, parent sequences are designed using CPD. We then recom-
bine the parents to form a chimera library. The fi nal section discusses
how information from library screening could be used to enhance
subsequent designs. We will not discuss the experimental construc-
tion of chimera libraries because protocols for site-directed chime-
ragenesis are thoroughly described in earlier reports [38 , 39].

 To begin a protein design problem we defi ne a design palette:
the set of candidate amino acids for each design position. Ideally,
the design palette should be limited in size so that the resulting
sequence space can be computationally searched in a reasonable
time frame. Early zinc fi nger protein design work by Dahiyat and
Mayo demonstrated the value of specifying a carefully selected
design palette [40]. In this case the palette was restricted to alanine
and hydrophilic residues (Ala, Ser, Thr, His, Asp, Asn, Glu, Gln,
Lys, and Arg) at surface sites, hydrophobic residues (Ala, Val, Leu,
Ile, Phe, Tyr, and Trp) at buried sites, and hydrophilic or hydro-
phobic residues at boundary sites. Furthermore, two sites with φ
angles greater than 0° were restricted to Gly only. Even with this
reduced design palette, the small 30-residue protein had a search
space of 1.9 × 10 27 possible sequences, or 1.1 × 10 62 unique confor-
mational variations. Modern computers and search algorithms can
effectively search combinatorial solution spaces of this astounding
size [24 , 41], but such a diverse palette would not be feasible for
proteins with hundreds of residues. One reason to use a design
palette is to avoid buried hydrophilic amino acids and exposed
hydrophobic amino acids. However, Kuhlman and co-workers
recently reported a method for avoiding hydrophobic surface patches
without eliminating them from the design palette altogether [42].

 At the outset of a design challenge it can be diffi cult to cali-
brate the design palette. A conservative design palette would con-
sist of relatively few design sites, and would avoid any mutations
that are a priori likely to be disruptive. While a non-conservative
palette may facilitate the design of a superior sequence, it will also
allow more mutations, lead to a diverse library, and may result in a
largely unfolded library. The balance between diversity and stabil-
ity motivates an iterative approach; if the desired library “pheno-
type” and library stability are not achieved in the fi rst round of
library design, the palette can be adapted in subsequent iterations
to be more or less conservative.

3.1 Phase I: Create
a Design Palette

Library-Scale Computational Protein Design

134

 In this example, we design a very conservative palette intended
to engender a largely folded library. First, prevalent mutations are
identifi ed from homologous multiple sequence alignments. While
mutations commonly seen in consensus alignments are not guaran-
teed to be stabilizing, the selective pressure of evolution strongly
suggests that these mutations are not destabilizing. Second, fold-
ing free energy changes are estimated for every point mutation.
In principle, excluding mutations predicted to have unfavorable
folding free energy changes will result in a smaller, conservative
palette that is less likely to harbor destabilizing mutations.

 1. Identify sequences with a high sequence identity to the query
sequence.
 We used the Basic Local Alignment Search Tool (blast.ncbi.
nlm.nih.gov) to identify similar sequences and retained align-
ments with sequence identity greater than 35 %. For the CBHII
consensus analysis, 175 sequences met this cutoff criterion.

 2. Identify common amino acids at each site and save in a consen-
sus design palette.
 BLAST results were parsed using run _ alignment.py . A cumu-
lative approach was used that retained the most common
amino acid, second most common amino acid, etc. at each site
until 90 % of the sequences had been included.

 3. Calculate predicted folding free energy changes (ΔΔ G) for
each point mutation.
 Preparatory steps and FoldX calculations were executed using
 run _ foldx _ multi.py . All 20 amino acids were considered at
each site. See Note 1 for more information.

 4. Combine all favorable mutations (ΔΔ ≤ 0) in a secondary
palette.
 FoldX outputs were parsed using run _ foldx _ analysis.py .

 5. Repeat steps 3 and 4 with alternate backbone scaffolds to
account for slight variations in structure.
 Potential backbone scaffolds 1BVW, 2BVW, 1GZ1, and 1OC5
were identifi ed by BLAST searching against the Protein Data
Bank (PDB). Each chain from within a structural model was
considered a unique backbone scaffold. See Note 2 .

 6. For a conservative design, reduce the design palette to the
intersection between the consensus analysis and the multiple
structural modeling palettes (Table 1).
 The script run _ consensus _ foldx.py was used to identify the
intersection between multiple design palettes. We chose to
include mutations allowed in the consensus palette and by the
majority of the folding free energy palettes (arbitrarily defi ned
as 2/3).

Lucas B. Johnson et al.

135

 There are a few basic principles to consider when selecting parent
proteins for recombination. First, parent proteins must have similar
structure in order to remain folded upon recombination. If struc-
tural models are unavailable, sequence identity can be used to esti-
mate structural similarity. Parent sequences with high sequence
identity (60–80 % identity) generally have similar structure [43]
and recombination will result in a high fraction of folded chimeras.
In contrast, parent sequences with low sequence identity (<40 %
identity) are much more likely to engender unfolded chimeras
[32 , 44 , 45]. Second, critical residues should be conserved in each
 parent. Catalytic active site residues may be considered critical,
since variants that do not conserve these amino acids are very
unlikely to retain enzymatic activity. Other sites that may be con-
sidered critical include disulfi de residues, sites for posttranslational
modifi cation (e.g., glycosylation sites), and sites that could affect
the protein folding mechanism such as cis -prolines.

 Combinatorial optimization software, such as SHARPEN
(www.sharp-n.org), can be used to search for low-energy sequences
that meet these criteria [46 , 47]. Alternate side chain conformations
(rotamers) are included from the backbone-dependent Dunbrack
rotamer library [48]. Numerous algorithms exist for fi nding low-
energy sequences and conformations. SHARPEN allows users to
easily try a variety of stochastic algorithms (e.g., FasterPacker,
SimulatedAnnealingPacker). Because these algorithms may yield
different results for each repetition, repeated trials are useful for
identifying mutations that are strongly or weakly preferred by the
scoring function.

3.2 Phase II: Select
Parent Sequences

 Table 1
 Potential CBHII mutations at selected sites

 WT A.A.
 Consensus
palette FoldX palette

 Intersection
palette

 Chosen
A.A. Rationale

 N103 ANPSK NP NP P Allows h-bond between Y100
and E154 (Fig. 2a)

 R123 AIKNRV IKLMQRTV IKRV I Computational model predicts
favorable energy interactions
(Fig. 2b)

 Q361 GKLQSV ILMQV LQV Q Mutating Q361 loses side chain
backbone h-bond (Fig. 2c)

 K366 AEIKLNQST FKLY KL K K366L mutation introduces an
unfavorable nonpolar surface
residue (Fig. 2d)

Library-Scale Computational Protein Design

http://www.sharp-n.org/

136

 7. Given a design palette, search for low-energy sequences.
 We used the FasterPacker search algorithm in SHARPEN to
identify low-energy candidates according to an all-atom Rosetta
energy function [49]. This combinatorial optimization routine
mimics the single-residue perturbation/relaxation method
within the original description of the FASTER algorithm [41].
Briefl y, this method systematically attempts to surmount local
minima during optimization by temporarily fi xing a single side
chain in a particular conformation, and then assessing the effect of
that perturbation combined with the relaxation/optimization
of the neighboring side chains. Design calculations were per-
formed using run _ conservative _ design.py . Separate calculations
were run for the conservative and consensus design palettes.
A total of 100 repetitions were performed for each design.

 8. Sort candidate designs to identify the lowest energy design
(Fig. 1).
 The list of designed protein models generated by SHARPEN
was sorted using run _ sort _ by _ energy.py . For the conservative
design, the lowest energy sequence was 38 Rosetta energy

-800

-825

-850

-875

-900

Repacked
Wild Type

Designs

Conservative

Consensus
Designs

Predicted CBHII Energy Scores

Design Type

R
o

se
tt

a
E

n
er

g
y

S
co

re

 Fig. 1 Using a stochastic search algorithm in a design problem yields variants of
differing energies. The distribution of potential low-energy candidates was sampled
by performing 100 repetitions for each design palette. The starting energy score
of 1OCN.pdb was −501 Rosetta energy units (REU). After repacking to optimize side
chain conformations, the energy score was reduced to −807 REU (triangle).
Searches based on the conservative design palette (intersection of consensus and
FoldX methods) achieved an energy reduction of 38 REU (rectangles), while the
larger consensus palette allowed an energy reduction of 72 REU (rectangles)

Lucas B. Johnson et al.

137

units lower than the wild-type sequence. The larger consensus
design palette allowed a slightly more favorable energy change
of 73 energy units.

 9. Inspect designs to identify common mutations and stabilizing
features (Fig. 2a–d).
 Given the limitations of contemporary sampling and scoring in
CPD methods, visual inspection of the prospective mutations
can provide an additional opportunity to ensure a reasonable
design. The script master.py incorporates many analysis func-
tions, including multiple sequence alignments (run _ multiple _ se
quence _ alignment.py), global energy comparisons (run _ compare _
 pdbs.py), and amino acid polarity comparisons (run _ polarity _ of _
mutations.py). See Note 3 for more information.

 The fi nal conservative design contained a total of 58 mutations
(84 % sequence identity to wild-type sequence), whereas the con-
sensus design contained 120 mutations (66 % sequence identity to
wild-type sequence).

 After parent sequences have been fi nalized, one must select the
number of blocks to recombine. Block size infl uences library inter-
pretability and library size. We defi ne library interpretability as the
extent to which it is possible to (1) rationalize the functionality of
the library members in terms of structural detail and (2) deploy the
experimental data to construct an improved, more predictive
model for future designs. Small blocks can greatly improve library
interpretability. Namely, small blocks have fewer mutations per
block, allowing interesting changes in the protein fi tness to be
tracked to the responsible mutations. For example, Heinzelman et al.
were able to isolate an individual stabilizing mutation C404S from

3.3 Phase III:
Recombine Parent
Sequences to Form
a Library

 Fig. 2 Visual inspection of potential mutations. Example mutations include (a) W100Y and N103P, (b) R123I and
S127K, (c) A313P and N361V, and (d) K366L. See Table 1 for discussion regarding which mutations were kept
or reverted back to wild type

Library-Scale Computational Protein Design

138

recombined CBH II parents because the cognate block contained
only ten other mutations [50]. However, dividing a parent sequ-
ence into small blocks can greatly increase library size. Library size
can be determined from the number of blocks and the number of
parent sequences; for three parent sequences divided into four
blocks each, the resulting library size will be 3 4 or 81 chimeras.
If the aim is experimental screening of all library members, the
library should be sized according to the screening capacity.
Recombining more blocks, of smaller size, will increase the library
size exponentially.

 Given a range of desired block sizes, various structure-guided
methods can be used to determine ideal recombination sites.
Methods such as SCHEMA [51], SIRCH [52], and OPTCOMB
[17] aim to minimize the number of disruptive amino acid con-
tacts in recombined chimeras. Using a slightly different method,
FamClash combines clash detection with protein family sequence
data to maximize chimera functionality [53]. The protocol in this
chapter is built around the recombination as a shortest path prob-
lem (RASPP) method [54]. That said, the presented protocol
could readily be adapted to incorporate an alternative method.

 SCHEMA aims to maximize the number of folded library
members by minimizing the number of novel amino acid interac-
tions (not found in parent proteins) [31 , 55]. Interactions are
defi ned as heavy atom pairs (excluding backbone O and N and all
H) within 4.5 Å in a parent protein. A predictive SCHEMA energy
score “E” is assigned to represent the number of novel contacts
within each chimera. A diversity parameter “m” specifi es the
 number of mutations between each chimera and the closest parent.
The average SCHEMA energy and mutation level of all chimeras
within a library are denoted <E> and <m>, respectively. While con-
sidering <m> does provide a means of favoring diverse libraries, it
does not lend itself to the design of interpretable libraries. We
therefore propose a third metric H sbs

max
 , which is the maximum

Hamming number for a single block substitution. If a candidate
library is dominated by one or a few large blocks H sbs

max
 will be large

and the library will be less interpretable because the effect of chang-
ing the large blocks will include the aggregate effect of many muta-
tions. A small H sbs

max
 indicates that any block substitution that is

found to be important is less likely to have an obscure origin.
Multi-scale enzymology, tracing an important block effect to the
role of individual mutations, will be more feasible for such a library.

 The library containing the minimum number of nonnative
amino acid interactions can be determined by formulating the
library optimization as a dynamic programming problem [54]. By
weighting edges of a graph according to a SCHEMA penalty, a
shortest path can be chosen that contains optimum block crossover
sites. Further restrictions can be placed on the search space, such as
limiting crossover sites to locations where three or four nucleotides

Lucas B. Johnson et al.

139

are preserved in all parent sequences. Conserving nucleotides at
crossover sites allows blocks to be recombined using type II restric-
tion enzymes [39].

 10. Create a sequence alignment fi le based on the parent sequences.
 A number of programs are available for generating sequence
alignment fi les; we used ClustalOmega (www.ebi.ac.uk/
Tools/msa/clustalo/) and converted the format using run _
 convert _ msa _ format.py .

 11. Specify the library design parameters (Table 2).
 Block size is the primary parameter in recombination prob-
lems. However, the provided code is engineered for fl exibility.
The user can specify how amino acid contacts are defi ned
(minimum cutoff distances, and the heavy atoms considered),
and which sites are feasible crossover locations (e.g., the num-
ber of nucleotides in overlap regions). These parameters can
also be modifi ed in the settings fi le raspp _ confi g.py .

 12. Identify potential crossover sites. For each candidate set of
crossover sites, calculate <E>, <m>, and H sbs

max
 .

 Running run _ raspp _ curve.py generated a list of optimum
crossover sites. <E>, <m>, and H sbs

max
 were saved in an output

fi le pareto.csv for each set of sites.
 13. Select a candidate library corresponding to a set of crossover

sites.
 Ideally, the selected library will have low <E>, high <m>, and
low H sbs

max
 . Four potential CBHII libraries were identifi ed from

a plateau region on the <E>/<m> Pareto front (Fig. 3a). The
<E>/ H sbs

max
 Pareto front (Fig. 3b) allowed us to discriminate

between these four candidate libraries and select a design that
optimized diversity and interpretability. The fi nal design fea tures
recombination sites 167, 244, and 345.

 Table 2
 RASPP settings used for CBHII recombination

 Parameter Value Description

 pdbfi le “1ocn.A.pdb” Name of pdb fi le used to identify native contacts

 Cutoff 4.5 Distance cutoff used to identify native contacts (Å)

 Skipatoms ['N', 'O', 'H'] Atoms to be skipped when identifying native contacts (skips N and
O in backbone only)

 Numxo 3 Number of crossover sites (three crossover sites generate four blocks)

 Overhang 3 Number of conserved nucleotides required at crossover sites (can be
0 if overhangs are unnecessary for library construction)

 Min_lengths Range (5,7) Range of minimum block lengths

Library-Scale Computational Protein Design

http://www.ebi.ac.uk/Tools/msa/clustalo/
http://www.ebi.ac.uk/Tools/msa/clustalo/

140

c

In
di

vi
du

al
 S

CH
EM

A
En

er
gy

 (E
)

4530 35 40
0

5

10

15

Av
er

ag
e

SC
H

EM
A

En
er

gy
 <

E>

Candidate Four Block CBHII Librariesa

b Candidate Four Block CBHII Libraries

Properties of Individual Library Members

Individual Mutation Level (m)

Average Mutations from Nearest Parent <m>

3

4

5

6

2Av
er

ag
e

SC
H

EM
A

En
er

gy
 <

E>

Maximum Block-Block Hamming Distance Hsbs

30 40 50 60
max

4

6

8

10

2

0

0

10

20

0 10 20 30 40 50 0 6 12

 Fig. 3 Multiple design parameters can be considered when selecting a candidate
library. (a) A Pareto front for four-block CBHII recombination with one wild- type
and two conservatively designed parents (squares) has a similar average mutation
level <m> and average SCHEMA energy <E> as four-block recombination with
three wild-type parent sequences Humicola insolens , Chaetomium thermophilum ,
and Hypocrea jecorina (fi lled circles). Promising candidate libraries have low <E>
and high <m> (fi lled squares). (b) Maximum block-block hamming distance
H sbs max quantifi es the interpretability of each library. Four similar candidate libraries
from the <m> Pareto front (fi lled squares) are easily distinguished by the H sbs max
Pareto curve. (c) Within the library featuring crossover sites 167, 244, and 345,
chimeras have a distribution of mutation level “m” and SCHEMA energy “E”

Lucas B. Johnson et al.

141

 14. Inspect the prospective design.
 (a) Generate histograms of chimera properties (Fig. 3c).

 Do outliers skew the library average properties? Do the
distributions show that most library members have accept-
able diversity and predicted disruption? Distributions
can range from normal to multimodal, depending on the
parent proteins. Our selected library showed an approxi-
mately normal <E> distribution and a slightly skewed <m>
distribution.

 (b) Inspect the crossover sites and structural features of each
block (Fig. 4).
 A candidate library design can be inspected using PyMOL
(www.pymol.org). First load the parent pdb, and then run
the corresponding showcontacts.pml script by typing
@ showcontacts.pml .[recombination sites] into the PyMOL
command line. Blocks are colored based on selected cross-
over sites.

 (c) Verify that the library is constructible.
 Are the block sizes compatible with construction? Small
DNA fragments could be diffi cult to purify using gel puri-
fi cation. If using a restriction enzyme-based construction
protocol, ensure that the design produces the correct
overhangs. If the candidate splice sites are not orthogonal,
can alternate codons be used? If necessary, select a new
candidate library from the Pareto front.

 Another approach for selecting recombination crossover sites is
to ignore the protein sequence and select sites solely on the basis of
one protein structure. This alternate approach could be useful for
preliminary library designs where CPD parent sequences have not
yet been determined. In principle, structure- based crossover sites
could be selected using a variety of approaches similar to domain
detection algorithms [56]. However, to build a recombination library
experimentally, the blocks should consist of contiguous residues.

 Fig. 4 Structural blocks identifi ed using RASPP methods. Blocks are defi ned as
follows: Block 1—residues 91–166 (red), Block 2—residues 167–243 (blue),
Block 3—residues 244–344 (green), Block 4—residues 345–450 (grey)

Library-Scale Computational Protein Design

http://www.pymol.org/

142

Therefore, a simple expedient is to reuse the dynamic programming
approach of RASPP, but to replace the SCHEMA penalty matrix
with a simple binary contact map. The resulting crossover sites will
be those that minimize the number of inter-block contacts (and
therefore maximize the number of intra-block contacts). We dem-
onstrate this alternative method using run _ pick _ modules.py .

 15. Identify crossover sites for a range of minimum block lengths.
 We used run _ pick _ modules.py to create a histogram of poten-
tial block crossover sites.

 16. Select a set of preferred crossover sites and inspect structural
blocks.
 In our example, sites 172, 266, and 369 were frequently cho-
sen as crossover sites (Fig. 5a). Pick _ modules.py strongly favors
certain crossover sites that minimize the number of inter-block
contacts. Notably, these sites are not obvious from inspection
of the protein structure or the contact map (Fig. 5b).

 In any design cycle, the fi nal step involves constructing and
 experimentally verifying the designs. Selected chimeras can be syn-
thesized using traditional molecular biology techniques [39] or via
gene synthesis and assayed to determine the extent of folding or

3.4 Phase IV:
Evaluate the Library

 Fig. 5 (a) Scanning over a range of minimum block sizes from 5 to 90 creates a range of optimum block
recombination sites. To identify preferred sites, all sites occurring in more than two unique libraries are con-
sidered. Recombination sites 172, 266, and 369 are preferred for a four-block CBHII library. (b) The contact
map for 1OCN.pdb shows contacts characteristic of alpha helices and beta sheets. Ideal recombination blocks
maximize intra-block contacts and minimize inter-block contacts

Lucas B. Johnson et al.

143

retained activity. In the CBHII example, an activity assay such as
the Nelson-Somogyi reducing sugar assay could be performed at a
variety of temperatures to test chimera function and stability [34].

 Experimental verifi cation of large libraries can be costly and
time consuming. One approach is to experimentally screen a small
percentage of the library and attempt to use the initial screening
data to derive a predictive stability model applicable to the remain-
der of the library. Simple regression methods that model the stabil-
ity of each chimera as the sum of contributions from each block
have been found to be predictive [57]. The surprising additivity
of block contributions to stability can be attributed to sequence
conservation among the parents and the partitioning of epistatic
interactions into structural modules [45].

 To complete the iterative library design cycle, knowledge
gained from experimental testing can be incorporated into sub-
sequent designs (Fig. 6). In addition to predicting the fi tness of
library members, a trained regression model can also guide the
refi nement of the CPD methodology. For example, if a particular
sequence block from one of the CPD design variants was found to
be highly destabilizing, the defi ciency in the CPD model can be
investigated by reexamining the mutations that comprise that block.

4 Example 2: Localized Protein Design Libraries

 Many properties of a protein depend critically on a subset of the
amino acids. Protein-protein binding, cofactor binding, enzyme
specifi city, and catalysis are all properties for which structural
 models can enable hypothesis-driven engineering of specifi c resi-
dues. The applications for focused protein library design are nearly
limitless. Below, we briefl y survey a selection of such applications
before presenting an example protocol.

4.1 Introduction

Wild Type
Design 1

Design 2

Parent Enzymes Recombination Library

AssayBlock Regression Analysis

34 = 81 possible chimeras

Stability ablock

Protein Stability

Pr

ot
ei

ns

U
nf

ol
de

d

 Fig. 6 Library design is an iterative cycle that consists of parent selection, block
recombination, experimental testing, and validation of biophysical models

Library-Scale Computational Protein Design

144

 Protein-protein interactions (PPIs) are fundamental to many of the
biomolecular recognition events that drive biological processes.
However, understanding PPIs is diffi cult because they typically
involve many weak noncovalent bonds over large surfaces. The
biophysical principles (e.g., extent of buried nonpolar surface area)
underpinning protein-protein interfaces vary [58], and not all
 participating amino acids will contribute equally to the binding
affi nity [59].

 Just as understanding PPIs plays a key role in molecular biology,
the ability to control PPIs is key for engineering new therapeutic
biomolecules. Baker and co-workers demonstrated an effective
protocol de novo protein inhibitor design with a protein that binds
an infl uenza virus stalk site [60 , 61]. Engineering new PPIs as a
CPD problem extends the methods deployed for monomeric CPD
[10 , 62]. Combinatorial optimization routines are applied to the
interfacial amino acids to optimize a scoring function that includes
van der Waals, hydrogen bonding, and electrostatic interactions
with the partner protein. Notably, alternate approaches to engineer
interactions can circumvent the need to engineer large comple-
mentary surfaces. Examples include the addition of shared metal-
binding sites [63] or disulfi de bonds [64].

 An improved understanding of PPIs could also be useful for
downstream problems in biotherapeutic development. For exam-
ple, prevention of aggregation is important to extending the shelf
life of therapeutic proteins. Unwanted PPIs could be destabilized
through site-specifi c mutations of existing complementary inter-
faces or electrostatic repulsion via supercharging [4 , 62 , 65].

 Binding of metals and small organic molecules is necessary for
many proteins to function. Mutations of amino acids in the hydro-
phobic protein core can result in new cavities for small molecules
to bind. For small nonpolar molecules, it is desirable to create a
hydrophobic local environment around the cavity. Hecht and co-
workers demonstrated that the simple truncation of Phe to Ala in
the de novo protein S-824 resulted in the ability to bind small
aromatic compounds [66]. Binding polar molecules and metals is
more challenging because it requires the installation of comple-
mentary electrostatic interactions and hydrogen bonds. Notably,
Matthews and co-workers have created cavities in T4 lysozyme that
can bind the polar ligands pyridine, phenol, and aniline [67].

 Engineering organisms to produce higher yields of products via
knockouts of competing metabolic pathways can create cofactor
imbalances. Shifting cofactor specifi city may resolve this problem
by substituting the limiting cofactor with one that is in excess. For
example, in attempts to anaerobically produce isobutanol in
 Escherichia coli via the Ehrlich pathway, NADPH-dependent

4.1.1 Protein-Protein
Interface Design

4.1.2 Binding
Small Molecules

4.1.3 Changing
Cofactor Specifi city

Lucas B. Johnson et al.

145

enzymes were engineered to shift the specifi city preference to
NADH. The best variant of the fi nal library exhibited a specifi city
of 185:1 for NADH to NADPH, a 54,000-fold change from
the original variant. By completely removing the dependence
on NADPH, isobutanol titres at 100 % theoretical yield were
achieved [68].

 A widely used approach for introducing amino acid diversity at
a particular site is through the use of degenerate codons [69].
Degenerate codons are sets of oligonucleotides that code for
 multiple amino acids. The standard degenerate codon naming con-
vention used in this text is presented in Table 3 . Routine site satu-
ration mutagenesis protocols often employ the degenerate codon
NNK, which codes for all 20 amino acids [70]. While site satura-
tion mutagenesis is simple and effi cient, combinatorial explosion
limits the number of sites that may be targeted. As the number
of saturation sites increases, it rapidly becomes infeasible to trans-
form, isolate, and thoroughly screen the resulting library. Even with
a very-high-throughput screen, allowing for screening of 10 8 –10 11
targets [71], site saturation mutagenesis can only be performed
on eight residues. Furthermore, NNK encodes the amino acids
unevenly (Fig. 7). The resulting bias against rare amino acid com-
binations increases exponentially with the number of sites.

 The limitations of site saturation mutagenesis motivate the
development of more effi cient methods that eschew brute force
search. Table 4 illustrates various useful degenerate codon alterna-
tives to NNK. These sets allow for introduction of diversity at a

4.1.4 Degenerate
Codons

 Table 3
 Translation of degenerate codon base to nucleotides

 Degenerate base Actual base

 N A or C or G or T

 B C or G or T

 D A or G or T

 H A or C or T

 V A or C or G

 K G or T

 M A or C

 R A or G

 S C or G

 W A or T

 Y C or T

Library-Scale Computational Protein Design

146

1

2

3

A C D E F G H I K L M N P Q R S T V W Y Stop

N
u

m
b

er
 o

f
O

cc
u

re
n

ce
s

Amino Acid

Amino Acid Distribution for NNK Codon

 Fig. 7 Selection of the codon NNK unevenly encodes the amino acids. NNK also
encodes for a stop codon, which will result in a nonfunctional variant

 Table 4
 Examples of degenerate codon to amino acid subset

 Codon Type Amino acids Stop codons Unique codons

 NNK All 20 A.A. All 20 TAG 32

 DVT Hydrophilic A,C,D,G,N,S,T,Y None 9

 NVT Charged, hydrophilic C,D,G,H,N,P,R,S,T,Y None 12

 VVC Hydrophilic A,D,G,H,N,P,R,S,T None 9

 NTT Hydrophobic F,I,L,V None 4

 TDK Hydrophobic C,F,L,W,Y TAG 6

 TTN Hydrophobic F,L None 4

 (DSC/DST/DSY) Small A,C,G,S,T None 5

 GMT Single-mutation
alanine scanning

 A,D None 2
 GMA A,E None 2
 GST A,G None 2
 SCA A,P None 2
 KCC A,S None 2
 RCT A,T None 2
 GYT A,V None 2

Lucas B. Johnson et al.

147

site, but limit the mutations to a set of hypotheses. The foremost
factor when considering a degenerate codon is the resulting set of
amino acids. A secondary factor to consider is bias. For example,
Fig. 8 illustrates how the set of amino acids containing exclusively
Phe and Leu can be encoded by eight degenerate codons, with
varying bias. Only the degenerate codons TTK and TTN encode
Phe and Leu in equal proportions.

 Due to the problems associated with site saturation mutagenesis,
semi-rational methods have been developed for “intelligent” picking
of codons to optimize either library size or amino acid ratios [72 , 73].
We present a method below that uses an interactive python script
(codons.py) for selecting site-specifi c degenerate codons. Codons.py
allows a user to consider how alternate degenerate codons will drive
the distribution of amino acids at a particular site, and to consider
the library size and screening requirements that result from degener-
ate codons at multiple sites. To focus the discussion we will consider
an illustrative example consisting of the cofactor switch of NADPH
to NADH in ketol-acid reductoisomerase (KARI) [68 , 74].

 We will assume the availability of a structural model. The identifi -
cation of specifi c target residues (e.g., active site, cofactor-binding
site) can be accomplished via visual inspection in PyMOL [75]
or via computational algorithms [76 , 77]. Once the positions are
selected, continued visual inspection will inform the decision of
whether to use site saturation mutagenesis or a more limited subset
of amino acids. Just as with site selection, the amino acid design
palette can be based on calculations [78] or through biophysical
intuition alone. The PyMOL mutation tool is an excellent prospec-
tive modeling technique for inspecting candidate mutations, since
it allows rotamer sampling and indicates steric clashes. Thus visual
inspection of candidate mutations may elucidate amino acids that
are too large for the site or cannot avoid a detrimental interaction
with existing amino acids/cofactors. Alternately, the scan of poten-
tial mutations and the conformations thereof can be automated.

4.2 Approach

4.3 Phase I:
Identifi cation
of Site Mutations

Phe and Leu Codons

Codon
L:F

YTD
5:1

YTN
6:2

YTK
3:1

YTB
4:2

TTD
2:1

TTN
2:2

TTK
1:1

TTB
1:2

 Fig. 8 Visualization of amino acid bias for codons exclusively encoding for L and F. Codon optimization must be
performed to discriminate between codons encoding for similar amino acid ratios (i.e., 2:4 and 1:2)

Library-Scale Computational Protein Design

148

Regardless, a list of favorable and unfavorable amino acids should
be tabulated prior to use of codons.py . Under most circumstances,
it is highly recommended that the wild-type amino acid be included
in the design palette. One benefi t is practical: including the wild-
type amino acid will increase the fraction of the library that retains
structure and function. Another benefi t is philosophical: if the wild-
type amino acid is an option for each design position, then the
wild-type sequence should be a member of the library. With suffi -
cient screening, such a library should yield this positive control.

 In our cofactor switch example, the structure of the IlvC E. coli
(without cofactor) was aligned to that of KARI spinach bound
with NADPH. Five residues were identifi ed for mutagenesis
through proximity to the homologous NADPH position: R68,
A71, R76, S78, and Q110. Residues R68, A71, R76, and S78
were selected due to their interactions with the 2′ phosphate group
of the bound NADPH. Q110 was selected for its potential to
 orient the cofactor through interaction with the adenine moiety.

 A strategy for shifting specifi city from NADPH to NADH is to
disrupt the salt bridge between positively charged residues inter-
acting with the NADPH 2′ phosphate by mutations to negatively
charged aspartic or glutamic acids [79]. Figure 9 illustrates how
unfavorable interactions with NADPH could be formed via muta-
genesis of each of the identifi ed residues to Asp. Introducing
 negatively charged side chains can lower NADPH affi nity and is
sometimes suffi cient to switch the cofactor specifi city in favor of
NADH [80]. However, improved specifi city for NADH is often
accompanied by loss of activity. As seen in Fig. 9 , mutating S78 not
only disrupts the salt bridge of NADPH 2′ phosphate, but it also
might create a favorable hydrogen bond with the NADH hydroxyl
group. We will use sites R68, R76, and S78 as examples in the
degenerate codon design protocol (Table 5).

 Codons.py is a user-friendly tool for interactively selecting degenerate
codons. The primary function of codons.py is to rank all prospective
codons according to user-provided design goals. A set of required,
taboo, preferred (“good”), and penalized (“bad”) amino acids are
provided either as arguments or interactive inputs to the main func-
tion. Subsequently, simple scoring methods rank the candidate
codons that best fulfi ll the design objectives. Predefi ned amino acid
sets can easily be specifi ed and incorporated into the code. Aliphatic,
hydrophobic, hydrophilic, acidic, and basic amino acid sets are
 predefi ned and can be input in place of individual amino acids. As
outlined in detail below, scoring function options include the num-
ber of preferred amino acids encoded by a codon, the number of
unique preferred amino acids encoded by a codon, and percentage
of preferred amino acids out of amino acids in distribution encoded
by a codon. Despite the simplicity of the scoring functions, the
results nonetheless facilitate the sifting of many codon possibilities.

4.4 Phase II:
Codons. py

Lucas B. Johnson et al.

149

The scoring functions could be easily adapted if a more sophisticated
scoring scheme is desired. The method for running codons.py is as
follows:

 1. Run codons.py interactively by entering the following into the
command line: python codons.py (if manual usage is desired,
enter python –i codons.py manual; see Note 4 for examples of
manual input).

 2. The program will interactively ask for arguments (the help
screen can be accessed at anytime by entering “?”):

 (a) Enter required amino acids.
 Set of amino acids that must be encoded. The wild-type
amino acid is highly recommended for this set.

 (b) Enter good amino acids.
 Set of amino acids that give a positive score if encoded.

 (c) Enter bad amino acids.
 Set of amino acids that give a negative score if encoded.

 (d) Enter taboo amino acids.
 Set of amino acids that are not allowed to be encoded. For
example, stop codons (denoted by an underscore) are typi-
cally designated as taboo.

 Fig. 9 Visualization of structural alignment between E. coli IlvC and Spinach KARI with NADPH bound in
the active site. (a) Identifi cation of R68, A71, R76, S78, and Q110 as potential residues for mutation in IlvC.
(b) Depiction of favorable interaction created by S78D mutation and steric clashes created by Q110Y mutation.
(c) Depiction of potential favorable mutations. (d) Depiction of unfavorable interactions from mutations to large
residues

Library-Scale Computational Protein Design

150

 (e) Enter desired scoring function.
 Specify how to score the codons. The default scoring

scheme is “distribution.”
 ● Set : In this mode, candidate degenerate codons will be

assessed using the unique set of encoded amino acids.
Scoring is performed by adding 1 if the amino acid is
in the preferred set and subtracting 1 if the amino acid
is in the bad set. A penalty of −1,000 is included if the
amino acid is taboo or if a required amino acid is not
encoded by the codon.

 ● Distribution : In this mode, candidate degenerate
codons will be assessed using the distribution of amino
acids encoded by each codon rather than just the set of
unique amino acids. Each amino acid in the codon
outcome distribution is scored. Scoring is performed
by adding 1 if the amino acid is in the preferred set and
subtracting 1 if the amino acid is in the bad set. If the
codon includes a taboo amino acid or lacks a required
amino acid, the score decreases by 1,000.

 Table 5
 Hypotheses for NADPH cofactor switch example

 Target Residue Required Preferred Rationale

 R68 R E,D Unfavorable interaction with 2′ phosphate group NADPH,
potential hydrogen bonding with NADH

 A71 A E,D Unfavorable interaction with 2′ phosphate group NADPH,
potential hydrogen bonding with NADH

 R76 R E,D Unfavorable interaction with 2′ phosphate group NADPH,
potential hydrogen bonding with NADH

 S78 S E,D Unfavorable interaction with 2′ phosphate group NADPH,
potential hydrogen bonding with NADH

 Q110 Q – No clear preference. Q110 mainly provides steric interaction

 Target residue Taboo Disfavored Rationale

 R68 Stop H,K Favorable interaction with 2′ phosphate on NADPH
 F,W,Y Size

 A71 Stop P,G,S,T Disfavored in alpha helix
 F,W,Y Size

 R76 Stop H,K Favorable interaction with 2′ phosphate on NADPH
 F,W,Y Size

 S78 Stop H,K Favorable interaction with 2′ phosphate on NADPH
 F,W,Y Size

 Q110 Stop P,G,S,T Disfavored in alpha helix
 F,W,Y Size

Lucas B. Johnson et al.

151

 ● Percent : In this mode, candidate degenerate codons
will be assessed by scoring the percentage of the out-
come amino acids (including the distribution bias)
that appear in the “good” set. If required amino acids
are not included in the distribution or if taboo amino
acids are included a penalty of −1,000 is added.

 (f) Specify output cutoff (integer).
 Option that only prints codons that score above a value.

 (g) Specify the output fi le name.
 Option that prints output to specifi ed fi le name.

 3. Following user input, a table of the ten highest scoring codons
will be displayed. If more results are desired, answer “y” to the
prompt and type in the desired number of results.

 4. After analysis of the table, the user is prompted to select a
degenerate codon. Guidelines for selecting degenerate codons
are presented in Phase III below.

 5. Once a codon is selected for the site, the program asks if another
site is desired. If selection of a degenerate codon for another
site is desired, answer “y” and steps 1 – 4 will be repeated.

 6. As the user selects degenerate codons for multiple sites, a
multi- site library is defi ned. Key parameters for a multi-site
library include the number of unique variants and the bias in
the amino acid distributions at the design positions. The
screening (number of random clones) necessary to experimen-
tally observe most of the library (e.g., 95 %) can be estimated
using random sampling with the function library_sampling
defi ned within codons.py .

 Codons.py was run for each mutation site identifi ed in Phase I using
hypotheses discussed in Table 5 . Sample output from running
codons.py for site A71 is represented in Table 6 .

 Although the script codons.py is interactive, the fi nal selection of a
particular codon is manual. On the fi rst attempt at selecting a
codon, the ranked candidates should be inspected to determine the
frequency of preferred amino acids to non-preferred amino acids
(see Note 5). If the preferred amino acids do not appear frequently
enough in the codons, consider rerunning codons.py with the pre-
ferred amino acid in the required list. The opposite is true as well;
if a “bad” amino acid is appearing at too high of a frequency, con-
sider moving that amino acid to the taboo list. Another key aspect
of the interactive codon selection is the process of refi ning the
design criteria in the light of the candidate codons. Typically, the
candidate list will include codons that result in larger and smaller
sets of amino acids, leading naturally to questions of screening
capacity. Also, by considering the list of candidates, other trade-
offs are likely to surface. Potentially, one might be selecting
between a panel of amino acids that includes all of the desired

4.5 Phase III: Codon
Selection

Library-Scale Computational Protein Design

152

amino acids but also includes an amino acid that is likely to be
incompatible with the protein conformation. The user must decide
if that codon is preferable to an alternative that avoids the destabi-
lizing option but covers fewer of the favored amino acids. At this
stage, it is worth reconsidering how the amino acids that appear in
favored codons, but were neither assigned as “good” or “bad,” are
likely to perform. We suggest evaluating amino acids interactively
in PyMOL using the Mutagenesis wizard with the following check-
list in mind:

 1) Does the mutation clash with the protein backbone?
 2) Does the mutation clash with existing side chains?
 (a) If there is a clash with a neighboring side chain, can the

neighbor move?

 Table 6
 Sample codons.py output for NADPH cofactor switch example

 Score Amino acid distribution Codons

 4 AAAADDEEVVVV GHN

 4 AAAADDEE GMN

 3 AAADEE GMD/GMV

 3 AAADDEVVV GHB/GHH

 3 AAADEEVVV GHD/GHV

 3 AAADDE GMB/GMH

 2 AAEEVV GHR

 2 AAAADDEEKKNNTTTT RMN

 2 AADD GMY

 2 AAADDEKNNTTT RMB/RMH

 2 AADDVV GHY

 2 AADDIINNTTVV RHY

 2 AADEVV GHK/GHM/GHS/GHW

 2 AAADDEIIIKNNTTTVVV RHH

 2 AADDNNTT RMY

 2 AAAADDEEIIIKKMNNTTTTVVVV RHN

 2 AAEE GMR

 2 AADE GMK/GMM/GMS/GMW

 2 AAADDEIIKMNNTTTVVV RHB

 1 ADNT RMC/RMT

Lucas B. Johnson et al.

153

 3) Does the mutation clash with an existing water molecule?
 (a) Can the water molecule be displaced without the loss of

favorable interactions?
 4) Does the mutation clash with a bound substrate?
 5) If favorable interaction with a bound substrate is a design cri-

terion, can a candidate mutation make favorable interaction(s)
considering size and hydrogen bonding geometry?

 6) If an unfavorable interaction with a bound substrate is a design
criteria, can a candidate mutation avoid making the unfavor-
able interactions?

 After running codons.py for each mutation site, a list of opti-
mum codons was identifi ed (Table 7). Given the availability of a
high-throughput screen to determine NADPH/NADH binding
(fl uorescence of NADPH/NADH) [68], codons encoding high
diversity at sites R68 and R76 were allowed. While A71 can accom-
modate many mutations, the palette was restricted to favor diver-
sity at the neighboring design positions. As a result, codons
encoding only the hypothesized residues and the WT were selected.
Considering the strong preference for the S78D mutation, D was
included in the required set for codons.py . The “percent” scoring
function was used to identify codons that provided the highest
percent coverage of D and E in the resulting amino acid distribu-
tions. Finally, due to lack of clear hypotheses for site Q110, only

 Table 7
 Favorable codons for NADPH cofactor switch example

 Site Candidate codons Amino acid distribution

 R68/R76 VDN DDEEGGGGHHIIIKKLLLLMNNQQRRRRRRSSVVVV

 RRN DDEEGGGGKKNNRRSS

 RNN AAAADDEEGGGGIIIKKMNNRRSSTTTTVVVV

 A71 GMN AAAADDEE

 GMK/GMM/GMS/GMW AADE

 GMD/GMV AAADEE

 S76 RNN AAAADDEEGGGGIIIKKMNNRRSSTTTTVVVV

 RRK,RRM,RRS,RRW DEGGKNRS

 RRC,RRT DGNS

 Q110 VWN DDEEHHIIIKKLLLLMNNQQVVVV

 VWH DDEHHIIIKLLLNNQVVV

 VWR EEIKKLLMQQVV

Library-Scale Computational Protein Design

154

disfavored amino acids were specifi ed. Codons at Q110 were thus
ranked highly if they encoded high diversity and excluded large
residues.

 From the selection of the top candidates, fi nal codons were
selected as presented in Table 8 . Depending on the degenerate
codon candidates, codon optimization for the selected expression
system (e.g., avoiding rare codons) could help discriminate between
candidates that result in different distributions of the same amino
acids (e.g., AAAALL and AAL) [81].

 Commercial oligonucleotide providers (e.g., Integrated DNA
Technologies, IDT) can synthesize primers with a mixture of wild-
type and non-wild-type nucleotides. If only a single-mutation site
or multiple-mutation sites in close proximity are desired, introduc-
tion of a degenerate codon can be accomplished with a single PCR
[82]. However, if the desired sites are distant from one another,
more extensive protocols must be used [70]. If the desired
 distribution of amino acids is not possible by a degenerate codon,
mixing oligonucleotides is an alternative option [78].

5 Notes

 1. Numerous programs exist for estimating folding free energy
change, including FoldX, I-Mutant2.0, Eris, and sMMGB
[83 – 86]. We chose the commonly used, semiempirical FoldX

4.6 Phase IV:
Experimental
Synthesis

 Table 8
 Final codon selection for NADPH cofactor switch example

 Site Final codon Distribution Rationale

 R68/R76 RNN AAAADDEEGGGGIIIK
KMNNRRSSTTTTVVVV

 (1) Introduction of diversity to these sites
with good representation of preferred
mutations (11 % frequency). (2) No
large amino acids included in set. (3)
Small frequency of bad amino acids

 A71 GMK,GMM,
GMS,GMW

 AADE (1) Lowest A:D:E ratio that encodes
exclusively for A,D,E. (2) Limited
diversity at this site is not unfavorable
due to high diversity at other sites. (3)
WT contributes to 50 % of encoded
distribution—potentially helpful due to
high diversity at other sites which might
require A71 to avoid steric clashes

 S78 RRK,RRM,
RRS,RRW

 DEGGKNRS Favorable interaction with hydroxyl group
appears at a high frequency (25 %)

 Q110 VWN DDEEHHIIIKKLLLLMN
NQQVVVV

 (1) Good diversity of smaller amino acids.
(2) No large amino acids included in set

Lucas B. Johnson et al.

155

for CBHII calculations. Estimating folding free energy
changes for 20 amino acids at 358 sites created a computa-
tionally intensive calculation. Computing all FoldX calcula-
tions for six different backbones took approximately 3 days on
a 2.6 GHz CPU.

 2. Traditional CPD relies on fi xed-backbone combinatorial opti-
mization of side chain positions and amino acid identity.
However, small differences in the backbone position can make
a large difference in the ability of amino acids to be favorably
placed at a given design position. Using an ensemble of rea-
sonable backbone models provides a more realistic approxi-
mation of the protein backbone fl exibility. This strategy is a
partial substitute for true fl exible-backbone design algorithms
[24 , 87].

 3. In inspecting the designs, we checked for the loss of hydrogen
bonds or the addition of questionable nonpolar surface muta-
tions. Detailed pairwise energy comparisons (run _ evaluate _
mutations.py), combined with visual inspection, constituted
the additional analysis of each proposed mutation. If we could
not identify the rationale for a mutation chosen by SHARPEN,
we performed a secondary search with additional rotamers
near the questionable residue (run _ questionable _ mutations.py).
All rotamers with chi angles within two standard deviations of
the default Dunbrack rotamer library angles were included.
Mutations that were still considered favorable in this secondary
search were included in the fi nal design. Otherwise, we used
 run _ mutate _ to _ wt.py to revert mutations back to the wild-type
amino acid variant.

 4. Manual input of arguments in codons.py can be accessed by
typing the following into the command line: python – i codons.
py manual . Manual input allows quick and easy iterations for
experienced users. Example inputs are given below for the
identifi cation of small replacements for leucine:

 pickcodons(good='AGVLIST', bad='WYFHRKED',
taboo='_', required='L', scoring='percent', outfi le=codons.txt')

 librarysize=compute_library_size('stringofcodons')
 5. As a general rule, it is best to start with soft constraints on

required and taboo mutations (i.e., only include WT in
required and “_” in taboo). After evaluation of results, if a
suitable distribution is not located, or visual inspection mer-
its further discrimination for or against certain amino acids,
then mutations may be moved into the required or taboo
categories.

 6. If a desired amino acid distribution can be encoded by multiple
codons, codon optimization can be performed to discriminate
between codons that encode for similar ratios.

Library-Scale Computational Protein Design

156

 References

 1. Romero PA, Arnold FH (2009) Exploring
 protein fi tness landscapes by directed evolu-
tion. Nat Rev Mol Cell Biol 10:866–876

 2. Tracewell CA, Arnold FH (2009) Directed
enzyme evolution: climbing fi tness peaks one
amino acid at a time. Curr Opin Chem Biol
13:3–9

 3. Kuhlman B, Dantas G, Ireton GC, Varani G,
Stoddard BL, Baker D (2003) Design of a
novel globular protein fold with atomic-level
accuracy. Science 302:1364

 4. Miklos AE, Kluwe C, Der BS, Pai S, Sircar A,
Hughes RA et al (2012) Structure-based
design of supercharged, highly thermoresistant
antibodies. Chem Biol 19:449–455

 5. Grigoryan G, Reinke AW, Keating AE (2009)
Design of protein-interaction specifi city gives
selective bZIP-binding peptides. Nature 458:
859–864

 6. Röthlisberger D, Khersonsky O, Wollacott
AM, Jiang L, DeChancie J, Betker J et al
(2008) Kemp elimination catalysts by compu-
tational enzyme design. Nature 453:190–195

 7. Privett HK, Kiss G, Lee TM, Blomberg R,
Chica RA, Thomas LM et al (2012) Iterative
approach to computational enzyme design.
Proc Natl Acad Sci U S A 109:3790–3795

 8. Dantas G, Kuhlman B, Callender D, Wong M,
Baker D (2003) A large scale test of computa-
tional protein design: folding and stability of
nine completely redesigned globular proteins.
J Mol Biol 332:449–460

 9. Chica RA, Doucet N, Pelletier JN (2005)
Semi-rational approaches to engineering
enzyme activity: combining the benefi ts of
directed evolution and rational design. Curr
Opin Biotechnol 16:378–384

 10. Karanicolas J, Com JE, Chen I, Joachmiak LA,
Dym O, Peck SH et al (2011) A de novo pro-
tein binding pair by computational design and
directed evolution. Mol Cell 42:250–260

 11. Khersonsky O, Kiss G, Röthlisberger D, Dym
O, Albeck S, Houk KN et al (2012) Bridging
the gaps in design methodologies by evolu-
tionary optimization of the stability and profi -
ciency of designed Kemp eliminase KE59. Proc
Natl Acad Sci U S A 109:10358–10363

 12. Bloom JD, Labthavikul ST, Otey CR, Arnold
FH (2006) Protein stability promotes evolvabil-
ity. Proc Natl Acad Sci U S A 103:5869–5874

 13. Gromiha MM (2007) Prediction of protein
stability upon point mutations. Biochem Soc
Trans 35:1569–1573

 14. Kamtekar S, Schiffer JM, Xiong H, Babik JM,
Hecht MH (1993) Protein design by binary

patterning of polar and nonpolar amino acids.
Science 262:1680

 15. Bradley LH, Thumfort PP, Hecht MH (2006)
De novo proteins from binary-patterned com-
binatorial libraries. Methods Mol Biol 340:
53–69

 16. Bradley LH, Wei Y, Thumfort P, Wurth C,
Hecht MH (2007) Protein design by binary
patterning of polar and nonpolar amino acids.
Methods Mol Biol 352:155–166

 17. Pantazes RJ, Saraf MC, Maranas CD (2007)
Optimal protein library design using recombi-
nation or point mutations based on sequence-
based scoring functions. Protein Eng Des Sel
20:361–373

 18. Steipe B, Schiller B, Plückthun A, Steinbacher
S (1994) Sequence statistics reliably predict
stabilizing mutations in a protein domain.
J Mol Biol 240:188–192

 19. Lehmann M, Kostrewa D, Wyss M, Brugger R,
D'Arcy A, Pasamontes L et al (2000) From
DNA sequence to improved functionality:
using protein sequence comparisons to rapidly
design a thermostable consensus phytase.
Protein Eng 13:49–57

 20. Amin N, Liu A, Ramer S, Aehle W, Meijer D,
Metin M et al (2004) Construction of stabi-
lized proteins by combinatorial consensus
mutagenesis. Protein Eng Des Sel 17:787

 21. Kono H, Wang W, Saven JG (2007)
Combinatorial protein design strategies using
computational methods. Methods Mol Biol
352:3–22

 22. Dunbrack RL Jr (2002) Rotamer libraries in
the 21st century. Curr Opin Struct Biol 12:
431–440

 23. Shetty RP, De Bakker PIW, DePristo MA,
Blundell TL (2003) Advantages of fi ne-grained
side chain conformer libraries. Protein Eng
16:963–969

 24. Hallen MA, Keedy DA, Donald BR (2012)
Dead-end elimination with perturbations
(DEEPer): a provable protein design algorithm
with continuous sidechain and backbone fl exi-
bility. Proteins 81:18–39

 25. Mena MA, Treynor TP, Mayo SL, Daugherty
PS (2006) Blue fl uorescent proteins with
enhanced brightness and photostability from a
structurally targeted library. Nat Biotechnol
24:1569–1571

 26. Allen BD, Nisthal A, Mayo SL (2010)
Experimental library screening demonstrates
the successful application of computational
protein design to large structural ensembles.
Proc Natl Acad Sci U S A 107:19838–19843

Lucas B. Johnson et al.

157

 27. Chica RA, Moore MM, Allen BD, Mayo SL
(2010) Generation of longer emission wave-
length red fl uorescent proteins using computa-
tionally designed libraries. Proc Natl Acad Sci
U S A 107:20257–20262

 28. Drummond DA, Silberg JJ, Meyer MM, Wilke
CO, Arnold FH (2005) On the conservative
nature of intragenic recombination. Proc Natl
Acad Sci U S A 102:5380

 29. Stemmer WPC (1994) Rapid evolution of a
protein in vitro by DNA shuffl ing. Nature
370:389–391

 30. Harayama S (1998) Artifi cial evolution by
DNA shuffl ing. Trends Biotechnol 16:76–82

 31. Meyer MM, Silberg JJ, Voigt CA, Endelman
JB, Mayo SL, Wang ZG et al (2003) Library
analysis of SCHEMA-guided protein recombi-
nation. Protein Sci 12:1686–1693

 32. Otey CR, Landwehr M, Endelman JB, Hiraga
K, Bloom JD, Arnold FH (2006) Structure-
guided recombination creates an artifi cial fam-
ily of cytochromes P450. PLoS Biol 4:e112

 33. Romero PA, Stone E, Lamb C, Chantranupong
L, Krause A, Miklos AE (2012) SCHEMA
designed variants of human arginase I & Ii
reveal sequence elements important to stability
and catalysis. ACS Synth Biol 1:221–228

 34. Heinzelman P, Snow CD, Wu I, Nguyen C,
Villalobos A, Govindarajan S et al (2009) A
family of thermostable fungal cellulases created
by structure-guided recombination. Proc Natl
Acad Sci U S A 106:5610–5615

 35. Heinzelman P, Komor R, Kanaan A, Romero
P, Yu X, Mohler S et al (2010) Effi cient screen-
ing of fungal cellobiohydrolase class I enzymes
for thermostabilizing sequence blocks by
SCHEMA structure-guided recombination.
Protein Eng Des Sel 23:871–880

 36. Komor RS, Romero PA, Xie CB, Arnold FH
(2012) Highly thermostable fungal cellobiohy-
drolase I (Cel7A) engineered using predictive
methods. Protein Eng Des Sel 25:827–833

 37. Smith MA, Rentmeister A, Snow CD, Wu T,
Farrow MF, Mingardon F et al (2012) A
diverse set of family 48 bacterial cellulases cre-
ated by structure-guided recombination. FEBS
J 279:4453–4465

 38. Hiraga K, Arnold FH (2003) General method
for sequence-independent site-directed chime-
ragenesis. J Mol Biol 330:287–296

 39. Farrow MF, Arnold FH (2010) Combinatorial
recombination of gene fragments to construct
a library of chimeras. Curr Protoc Protein Sci
Chapter 26, Unit 26.2

 40. Dahiyat BI, Mayo SL (1997) De novo protein
design: fully automated sequence selection.
Science 278:82–87

 41. Desmet J, Spriet J, Lasters I (2002) Fast and
accurate side‐chain topology and energy
refi nement (FASTER) as a new method for
protein structure optimization. Proteins 48:
31–43

 42. Jacak R, Leaver-Fay A, Kuhlman B (2012)
Computational protein design with explicit
consideration of surface hydrophobic patches.
Proteins 80:825–838

 43. Chothia C, Lesk AM (1986) The relation
between the divergence of sequence and struc-
ture in proteins. EMBO J 5:823–826

 44. Meyer MM, Hiraga K, Arnold FH (2006)
Combinatorial recombination of gene frag-
ments to construct a library of chimeras. Curr
Protoc Protein Sci Chapter 26, Unit 26.2

 45. Romero PA, Arnold FH (2012) Random fi eld
model reveals structure of the protein recom-
binational landscape. PLoS Comput Biol 8:
e1002713

 46. Loksha IV, Maiolo JR 3rd, Hong CW, Ng A,
Snow CD (2009) SHARPEN-systematic hier-
archical algorithms for rotamers and proteins
on an extended network. J Comput Chem 30:
999–1005

 47. Leaver-Fay A, Tyka M, Lewis SM, Lange OF,
Thompson J, Jacak R et al (2011) ROSETTA3:
an object-oriented software suite for the simu-
lation and design of macromolecules. Methods
Enzymol 487:545–574

 48. Dunbrack RL Jr, Cohen FE (1997) Bayesian
statistical analysis of protein side-chain rotamer
preferences. Protein Sci 6:1661–1681

 49. Rohl CA, Strauss CEM, Misura KMS, Baker D
(2004) Protein structure prediction using
Rosetta. Methods Enzymol 383:66–93

 50. Heinzelman P, Snow CD, Smith MA, Yu X,
Kannan A, Boulware K et al (2009) SCHEMA
recombination of a fungal cellulase uncovers a
single mutation that contributes markedly to
stability. J Biol Chem 284:26229–26233

 51. Voigt CA, Martinez C, Wang ZG, Mayo SL,
Arnold FH (2002) Protein building blocks
preserved by recombination. Nat Struct Mol
Biol 9:553–558

 52. Moore GL, Maranas CD (2003) Identifying
residue–residue clashes in protein hybrids by
using a second-order mean-fi eld approach.
Proc Natl Acad Sci U S A 100:5091

 53. Saraf MC, Horswill AR, Benkovic SJ, Maranas
CD (2004) FamClash: a method for ranking
the activity of engineered enzymes. Proc Natl
Acad Sci U S A 101:4142

 54. Endelman JB, Silberg JJ, Wang ZG, Arnold
FH (2004) Site-directed protein recombination
as a shortest-path problem. Protein Eng Des
Sel 17:589–594

Library-Scale Computational Protein Design

158

 55. Silberg JJ, Endelman JB, Arnold FH (2004)
SCHEMA-guided protein recombination.
Methods Enzymol 388:35–42

 56. Ingolfsson H, Yona G (2008) Protein domain
prediction. Methods Mol Biol 426:117–143

 57. Li Y, Drummond DA, Sawayama AM, Snow
CD, Bloom JD, Arnold FH (2007) A diverse
family of thermostable cytochrome P450s cre-
ated by recombination of stabilizing fragments.
Nat Biotechnol 25:1051–1056

 58. Jones S, Thornton JM (1996) Principles of
protein–protein interactions. Proc Natl Acad
Sci U S A 93:13–20

 59. Grosdidier S, Fernández-Recio J (2008)
Identifi cation of hot-spot residues in protein-
protein interactions by computational docking.
BMC Bioinformatics 9:447

 60. Fleishman SJ, Whitehead TA, Ekiert DC,
Dreyfus C, Corn JE, Strauch EM et al (2011)
Computational design of proteins targeting the
conserved stem region of infl uenza hemagglu-
tinin. Science 332:816–821

 61. Whitehead TA, Chevalier A, Song Y, Dreyfus
C, Fleishman SJ, De Mattos C et al (2012)
Optimization of affi nity, specifi city and
function of designed infl uenza inhibitors
using deep sequencing. Nat Biotechnol 30:
543–548

 62. Kortemme T, Baker D (2004) Computational
design of protein–protein interactions. Curr
Opin Chem Biol 8:91–97

 63. Salgado EN, Radford RJ, Tezcan FA (2010)
Metal-directed protein self-assembly. Acc
Chem Res 43:661–672

 64. Ballister ER, Lai AH, Zuckermann RN, Cheng
Y, Mougous JD (2008) In vitro self-assembly
of tailorable nanotubes from a simple protein
building block. Proc Natl Acad Sci U S A
105:3733–3738

 65. Lawrence MS, Phillips KJ, Liu DR (2007)
Supercharging proteins can impart unusual
resilience. J Am Chem Soc 129:
10110–10112

 66. Das A, Wei Y, Pelczer I, Hecht MH (2011)
Binding of small molecules to cavity forming
mutants of a de novo designed protein. Protein
Sci 20:702–711

 67. Liu L, Baase WA, Michael MM, Matthews BW
(2009) Use of stabilizing mutations to engi-
neer a charged group within a ligand-binding
hydrophobic cavity in T4 lysozyme.
Biochemistry 48:8842–8851

 68. Bastian S, Liu X, Meyerowitz JT, Snow CD,
Chen MM, Arnold FH (2011) Engineered
ketol-acid reductoisomerase and alcohol dehy-
drogenase enable anaerobic 2-methylpropan-

1-ol production at theoretical yield in
 Escherichia coli . Metab Eng 13:345–352

 69. Tang L, Gao H, Zhu X, Wang X, Zhou M,
Jiang R (2012) Construction of “small-
intelligent” focused mutagenesis libraries using
well-designed combinatorial degenerate prim-
ers. Biotechniques 52:149–158

 70. Georgescu R, Bandara G, Sun L (2003)
Saturation mutagenesis. Methods Mol Biol
231:75–83

 71. Denault M, Pelletier JN (2007) Protein library
design and screening: working out the proba-
bilities. Methods Mol Biol 352:127–154

 72. Mena MA, Daugherty PS (2005) Automated
design of degenerate codon libraries. Protein
Eng Des Sel 18:559–561

 73. Patrick WM, Firth AE (2005) Strategies and
computational tools for improving randomized
protein libraries. Biomol Eng 22:105–112

 74. Bastian S, Arnold FH (2012) Reversal of
NAD(P)H cofactor dependence by protein
engineering. Methods Mol Biol 834:17–31

 75. Schrödinger L (2010) The PyMOL molecular
graphics system, version 1.3r1

 76. Fischer JD, Mayer CE, Söding J (2008)
Prediction of protein functional residues from
sequence by probability density estimation.
Bioinformatics 24:613–620

 77. Sankararaman S, Sha F, Kirsch JF, Jordan MI,
Sjölander K (2010) Active site prediction using
evolutionary and structural information.
Bioinformatics 26:617–624

 78. Chen MMY, Snow CD, Vizcarra CL, Mayo SL,
Arnold FH (2012) Comparison of random
mutagenesis and semi-rational designed libraries
for improved cytochrome P450 BM3- catalyzed
hydroxylation of small alkanes. Protein Eng Des
Sel 25:171–178

 79. Scrutton NS, Berry A, Perham RN (1990)
Redesign of the coenzyme specifi city of a dehy-
drogenase by protein engineering. Nature 343:
38–43

 80. Rane MJ, Calvo KC (1997) Reversal of the
nucleotide specifi city of ketol acid reductoi-
somerase by site-directed mutagenesis identi-
fi es the NADPH binding site. Arch Biochem
Biophys 338:83–89

 81. Fuglsang A (2003) Codon optimizer: a free-
ware tool for codon optimization. Protein Expr
Purif 31:247–249

 82. Chiang LW, Kovari I, Howe MM (1993)
Mutagenic oligonucleotide-directed PCR
amplifi cation (Mod-PCR): an effi cient method
for generating random base substitution muta-
tions in a DNA sequence element. PCR
Methods Appl 2:210–217

Lucas B. Johnson et al.

159

 83. Guerois R, Nielsen JE, Serrano L (2002)
Predicting changes in the stability of proteins
and protein complexes: a study of more than
1000 mutations. J Mol Biol 320:369–387

 84. Capriotti E, Fariselli P, Casadio R (2005)
I-Mutant2. 0: predicting stability changes
upon mutation from the protein sequence or
structure. Nucleic Acids Res 33:W306–W310

 85. Yin S, Ding F, Dokholyan NV (2010)
Computational evaluation of protein stability

change upon mutations. Methods Mol Biol
634:189–201

 86. Zhang Z, Wang L, Gao Y, Zhang J,
Zhenirovskyy M, Alexov E (2012)
Predicting folding free energy changes upon
single point mutations. Bioinformatics 28:
664–671

 87. Mandell DJ, Kortemme T (2009) Backbone
fl exibility in computational protein design.
Curr Opin Biotechnol 20:420–428

Library-Scale Computational Protein Design

	Chapter 7: Methods for Library-Scale Computational Protein Design
	1 Introduction
	2 Materials
	3 Example I: Delocalized Design Libraries
	3.1 Phase I: Create a Design Palette
	3.2 Phase II: Select Parent Sequences
	3.3 Phase III: Recombine Parent Sequences to Form a Library
	3.4 Phase IV: Evaluate the Library

	4 Example 2: Localized Protein Design Libraries
	4.1 Introduction
	4.1.1 Protein-Protein Interface Design
	4.1.2 Binding Small Molecules
	4.1.3 Changing Cofactor Specificity
	4.1.4 Degenerate Codons

	4.2 Approach
	4.3 Phase I: Identification of Site Mutations
	4.4 Phase II: Codons. py
	4.5 Phase III: Codon Selection
	4.6 Phase IV: Experimental Synthesis

	5 Notes
	References

