

Five hierarchical levels of sequence-structure correlations in proteins

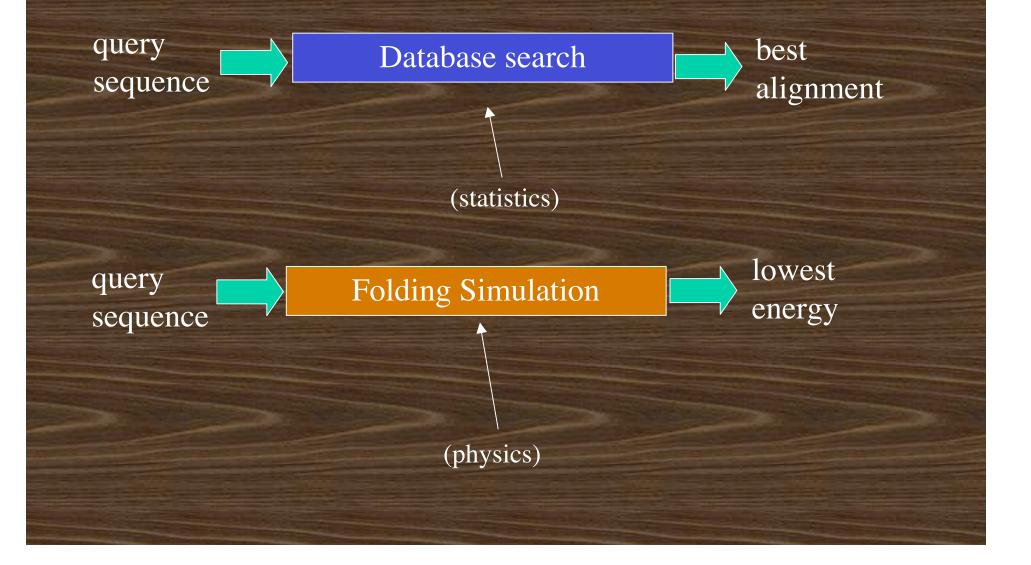
> Chris Bystroff Rensselaer Polytechnic Institute Troy, New York, USA

What does structure prediction tell us about the physics of folding?

Check one:

A. If we can predict protein structures, then we know how proteins fold.

B. If we know how proteins fold, then we can predict protein structures.



...two very different Underlying principles

query sequence

Darwin:

Proteins with a common ancestor have the same fold. best alignment

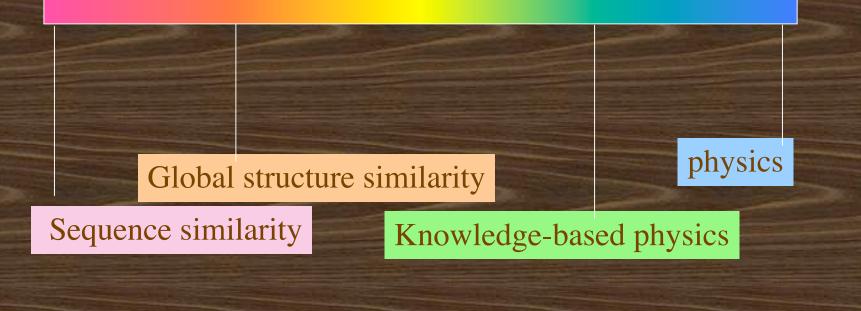
millions of years

Boltzmann:

query sequence Proteins adopt a minimum the free energy conformation. lowest energy

microseconds to seconds

Darwin versus Boltzmann. Do hybrid models make sense?

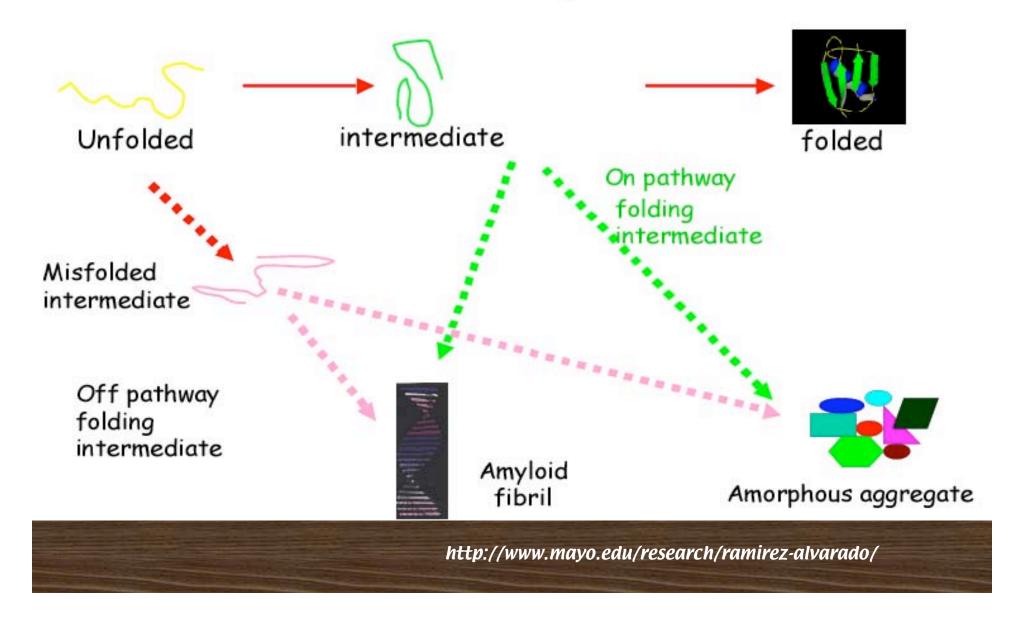


We know proteins fold via pathways.

local structure first, eliminating alternate pathways, then global

Proteins can fold because they don't have to search all of conformational space.

Protein Misfolding



Protein Misfolding diseases

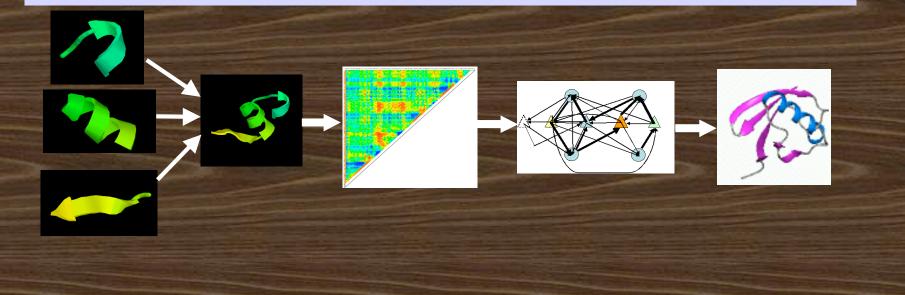
Alzheimer's disease Creutzfeldt-Jakob Disease (CJD)* Scrapie* Kuru* Huntington's Disease Parkinson's Disease Type-2 diabetes Familial Amyloid Polyneuropathy (FAP)

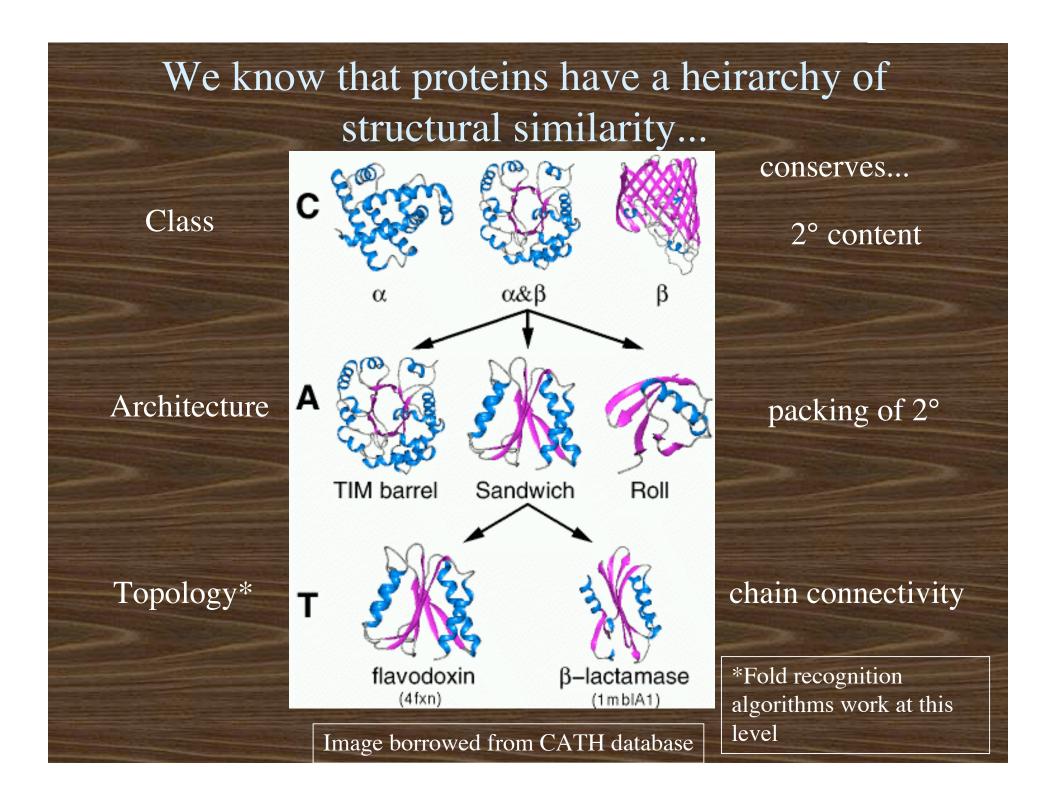
*Prion-linked

The goal: understand protein folding pathways

By modeling the ways proteins fold we can:

- (1) Predict the structure from the sequence
- (2) Predict the effects of any mutation
- (3) Design a new structure with a new function





Can we use the database to make models for folding pathways?

early
Steps along the folding pathway:
(1) Initiation
(2) propagation
(3) condensation
(4) molten globule
(5) native state
motifs Steps in data mining: local motifs extended local motifs pairs of motifs multiple motifs aligned multiple

Heirarchical level 1: Folding initiation site motifs

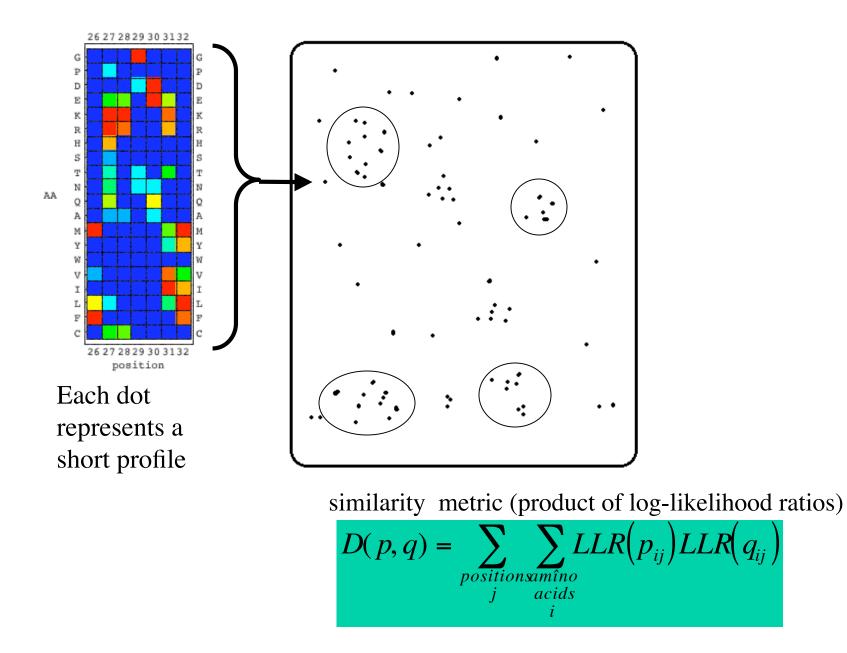
recurrent

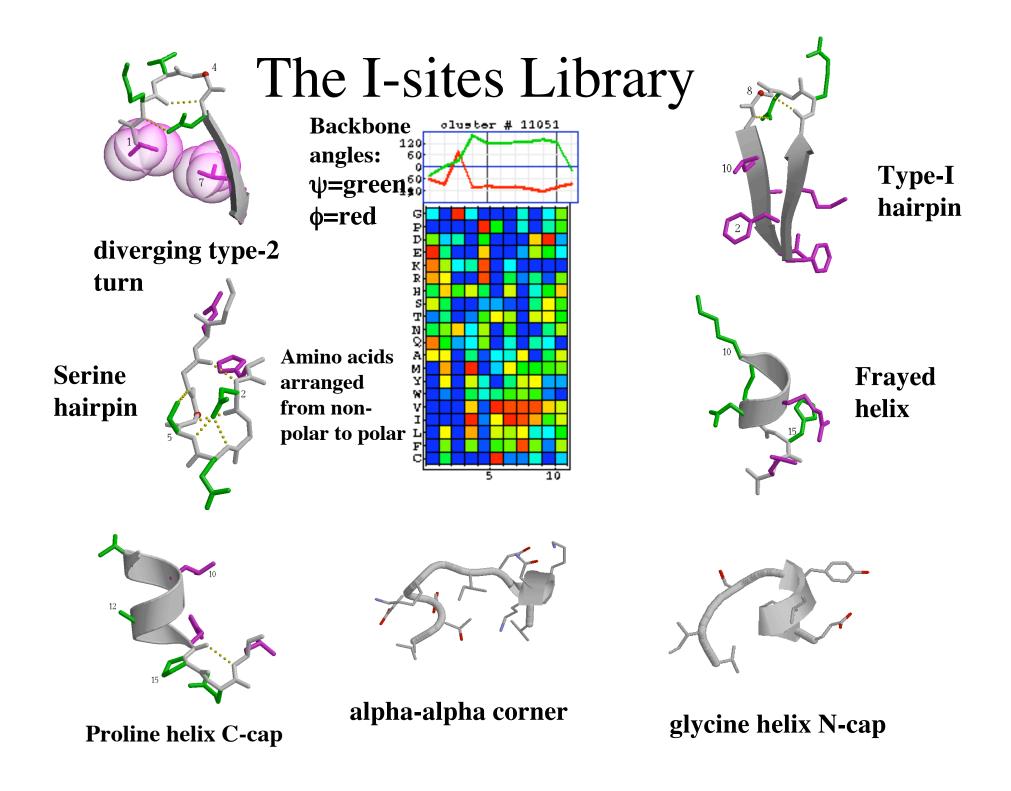
Non-homologous sequences

SEQUENCE HDFPIEGGDSPMQTIFFWSNANAKLSHGY CPYDNIWMQTIFFNQSAAVYSVLHLIFLT IDMNPQGSIEMQTIFFGYAESA ELSPVVNFLEEMQTIFFISGFTQTANSD INWGSMQTIFFEEWQLMNVMDKIPS IFNESKKKGIAMQTIFFILSGR PPPMQTIFFVIVNYNESKHALWCSVD PWMWNLMQTIFFISQQVIEIPS MQTIFFVFSHDEQMKLKGLKGA

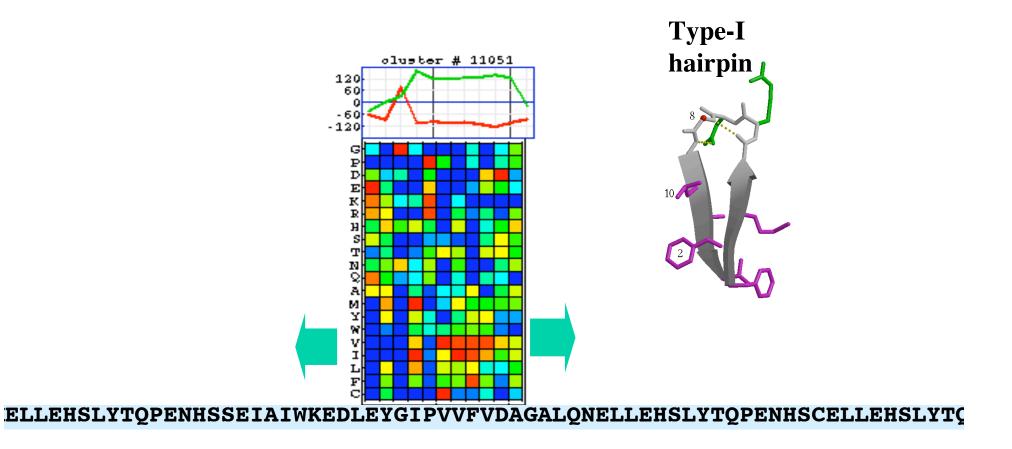
Is it a recurrent structure?

Clustering sequence profiles to find recurrent patterns





Finding I-sites



Are I-sites really folding initiation sites?

Prediction experiments

NMR data on peptides

(Bystroff & Baker, Proteins, 1997)

(Yi *et al*, J.Mol.Biol., 1998)

Molecular dynamics simulations

(Bystroff & Garde, Proteins, 2002)

Misfolding initiation sites?

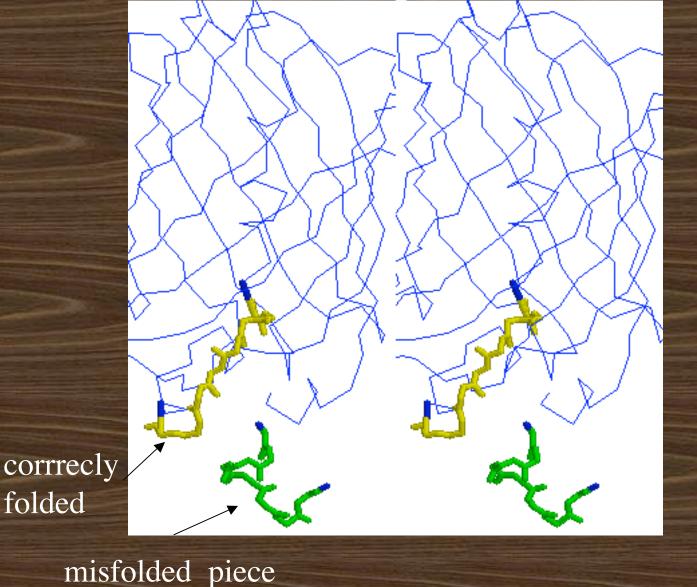
U=unfolded

F=folded

M=misfolded

A=aggregated

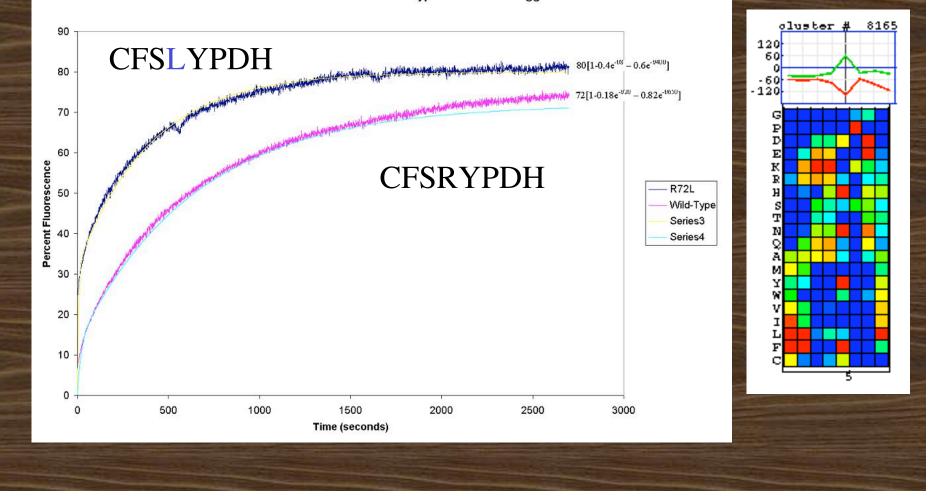
A



folded

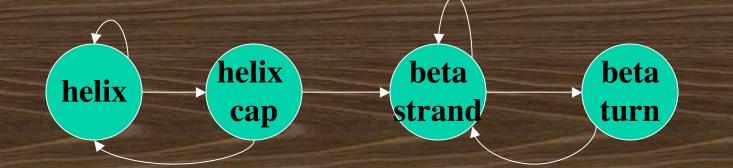
Destabilizing the misfolding initiation site

Percent Fluorescence of Renatured Wild-Type & R72L His-Tagged GFP



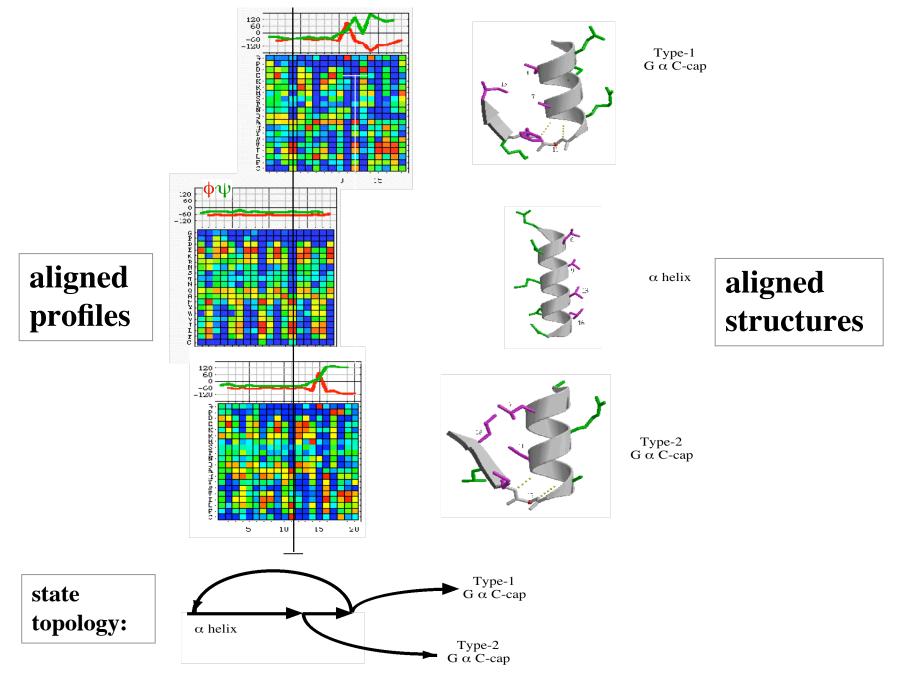
Level 2. Motif grammar

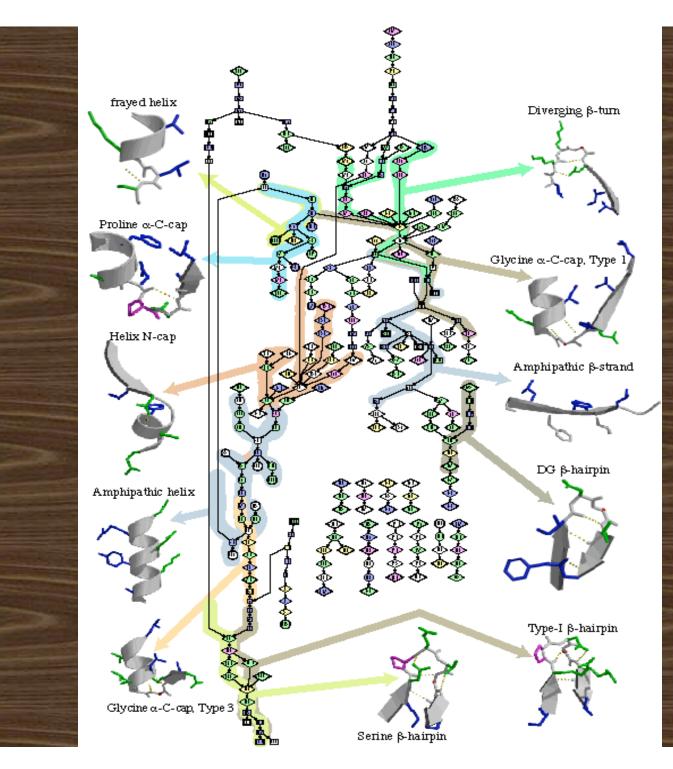
Arrangement of I-sites motifs in proteins is highly non-random



Adjacencies can be modeled as a Markov chain

Aligned motifs become a Markov chain





Hidden Markov Model for local protein STRucture

HMMSTR

282 nodes

317 transitions

Unified model for 31 distinct sequencestructure motifs

(Bystroff & Baker, J. Mol. Biol., 2000)

How an HMM works

We have *S* (the sequence). We want *Q* (the state sequence),

P(QlS) is the probability of Q given S

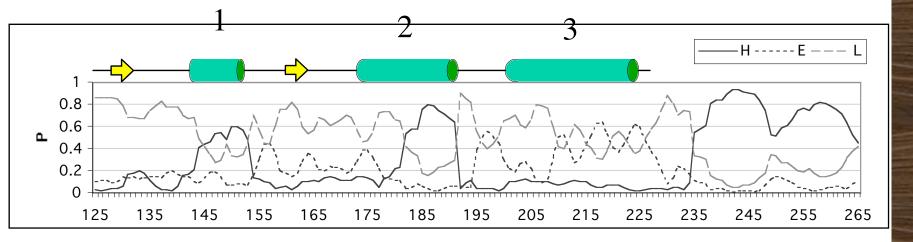
 $P(Q \mid S) = \pi_{q_1}(s_1) \qquad a_{q_{t-1}q_i}B_{q_t}(s_t)$ t = 2, N

starting states

arrows

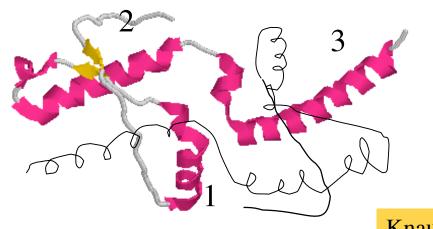
amino acid profiles

 $B_{i}(s_{t}) = \begin{pmatrix} d_{i}(D_{t}) \\ r_{i}(R_{t}) \\ C_{i}(C) \end{pmatrix} b_{q_{i}}(O_{t})$



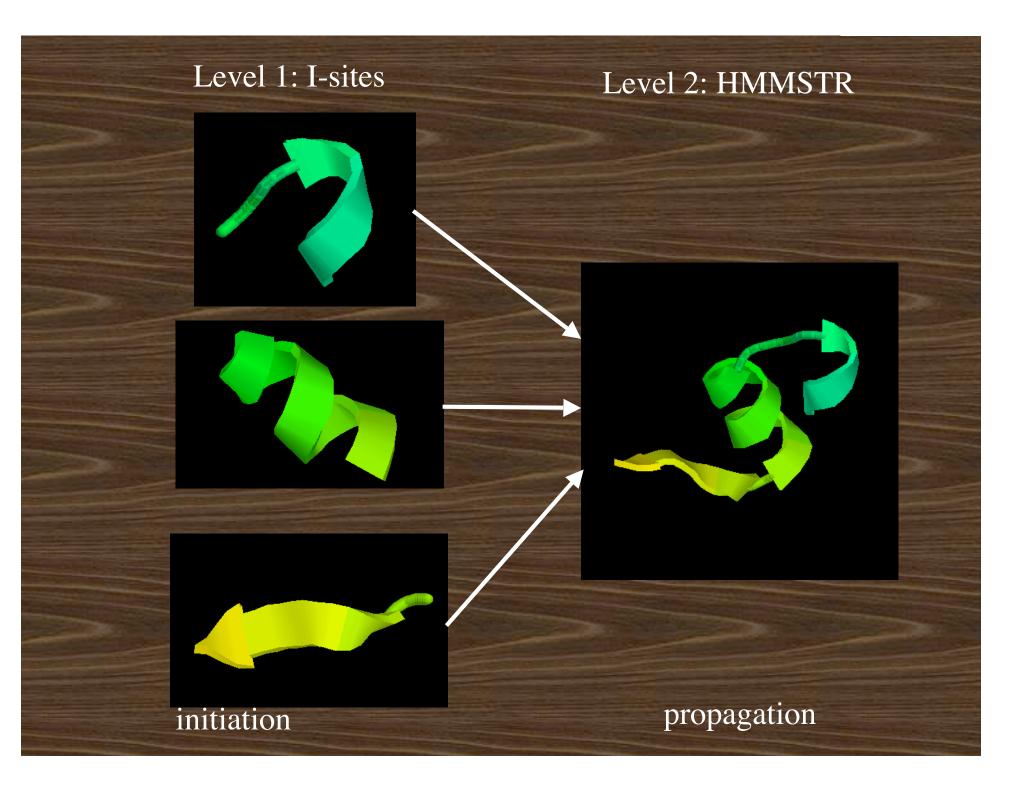
Human prion protein fragment. (X-ray structure solved in 2002)

HMMSTR secondary structure prediction



Helix 3 is known to be the location of familial prion disease

Knaus et al, NSB 8:770-4, 2001

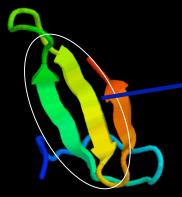


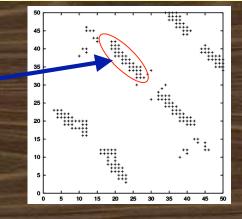
Level 3: Pairwise Motif-Motif Contact Potentials

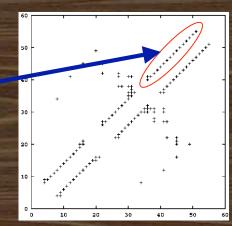
• G (p, q, s) represents the free energy of a motif-motif contact.

$$G(p,q,s) = -\log \frac{\sum_{PDBselect} \sum_{i \ni D_{i,i+s} < 8\mathring{A}} \Gamma(i,p) \Gamma(i+s,q)}{\sum_{PDBselect} \sum_{i} \Gamma(i,p) \Gamma(i+s,q)}$$

What is a contact map?Definition: $S(I,J) = \begin{cases} 1 & if \ d(i,j) \leq D \\ 0 & if \ d(i,j) > D \end{cases}$







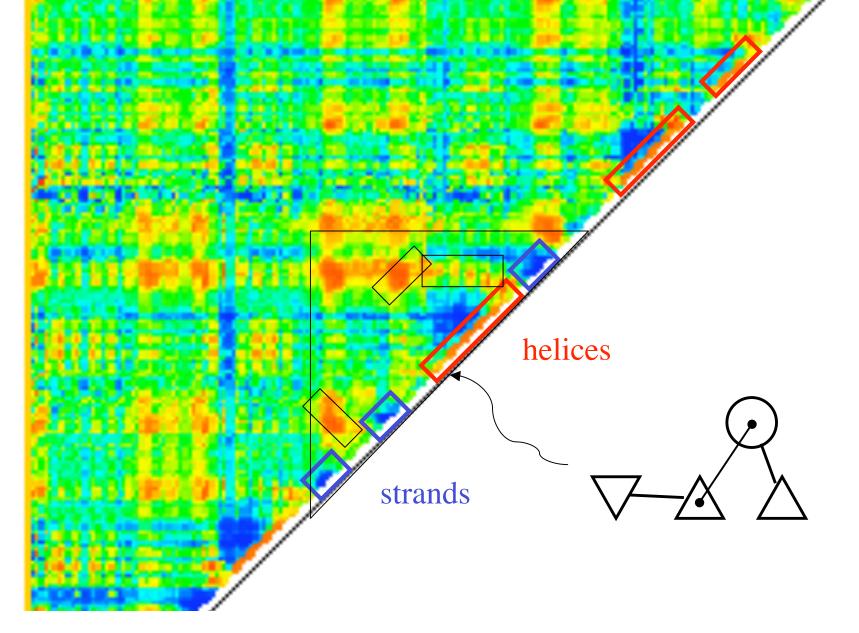
Both axes: sequence

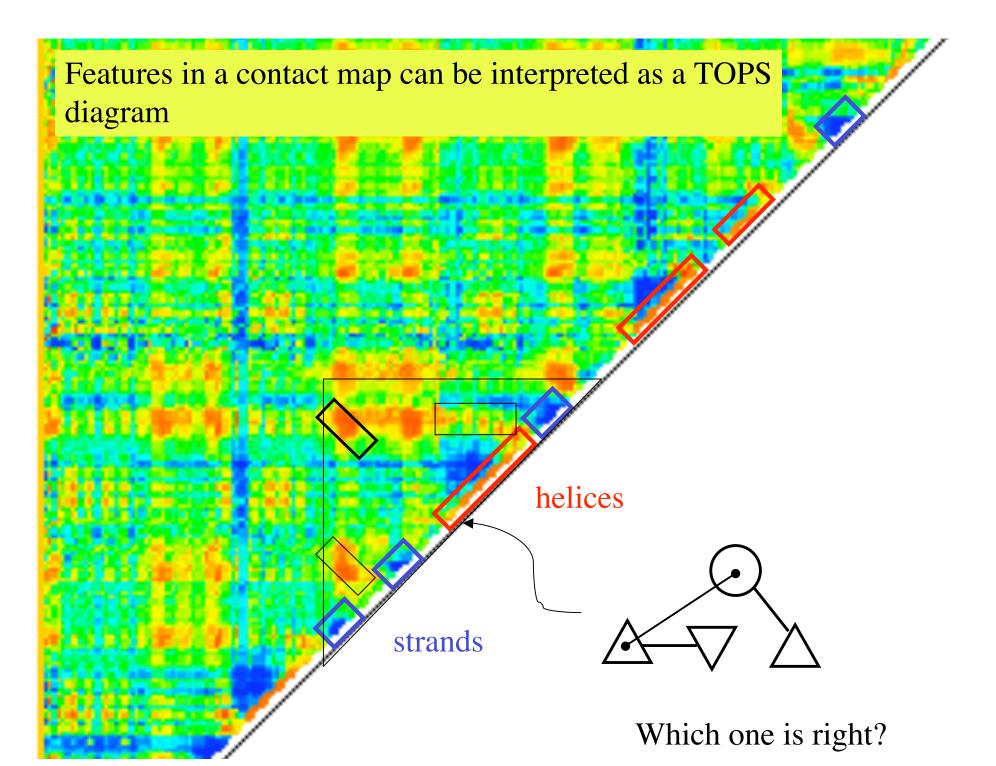
Red: favorable contact

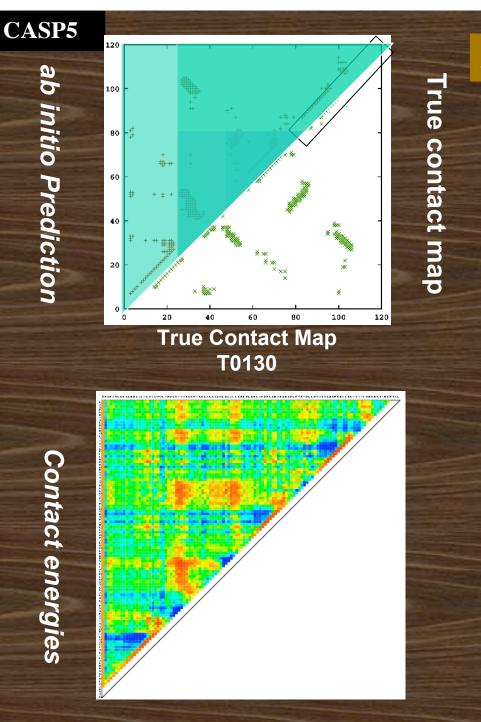
Blue: unfavorable

E(i,j)

Features in a contact map can be interpreted as a TOPS diagram







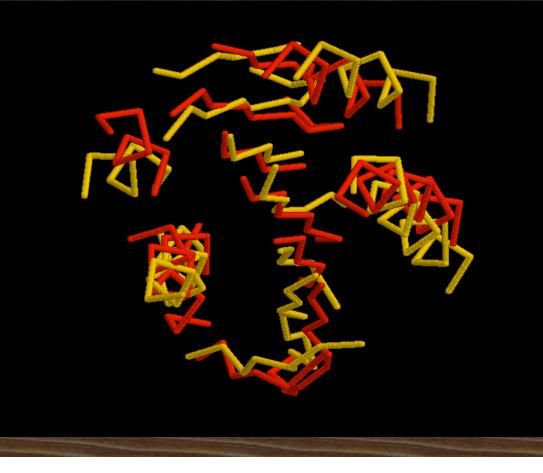
A rule-based simulation procedure.

amphipathic non-polar

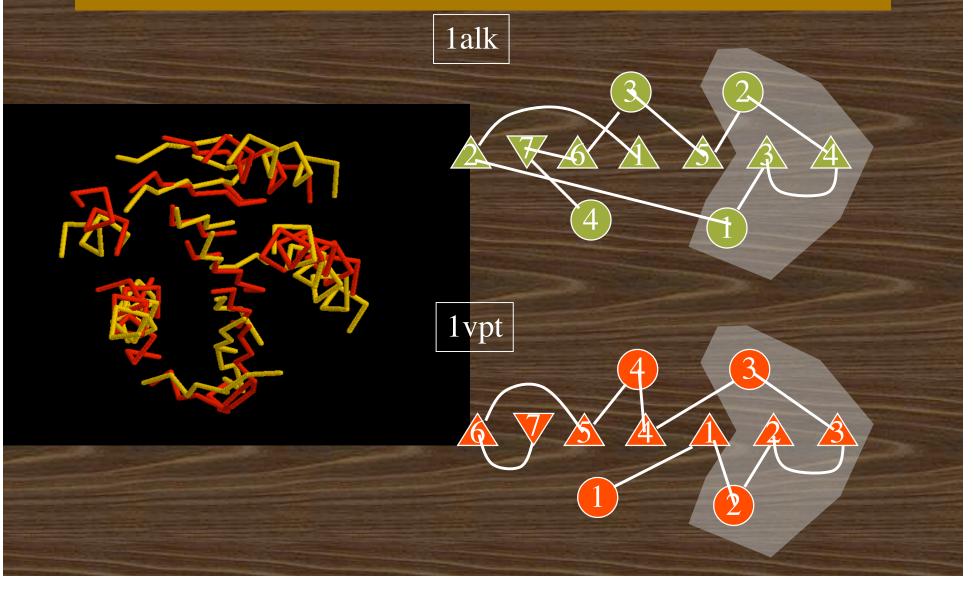
T0130

Level 4: Multibody arrangements of local motifs

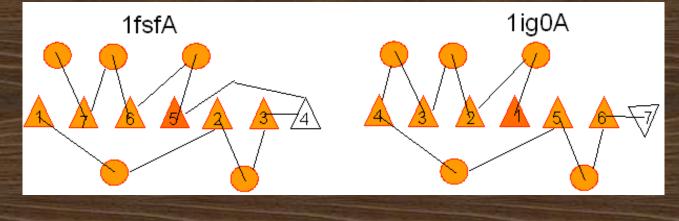
It is difficult to see similarities between these two proteins, but...



Different folds can have the same arrangement of secondary structure elements.



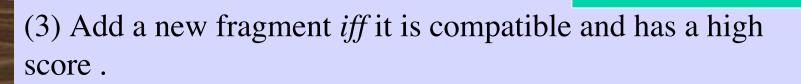
SCALI : Structural Core ALIgnment



How SCALI works

(1) Gapless alignment of HMMSTR states

(2) Initialize tree search w/ one gapless fragment.



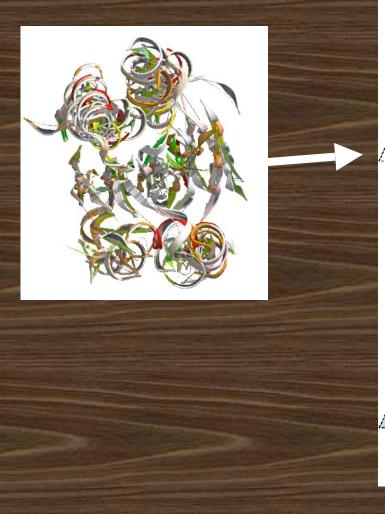
(4) Tree leaves when no fragments can be added.

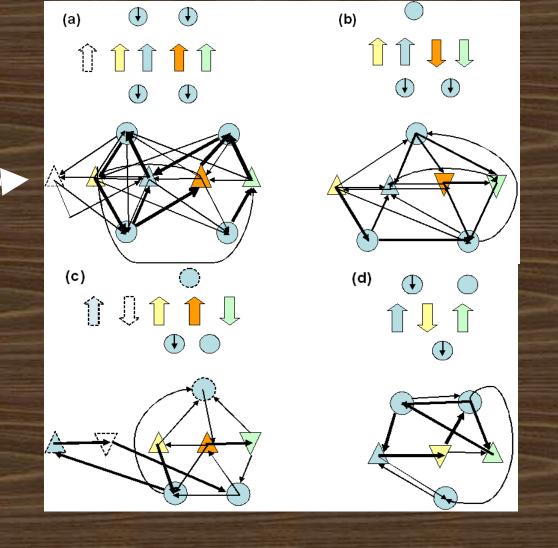
Score of leaves = aligned contacts + permutation penalty.

HMMs may be built based on nonsequential alignments

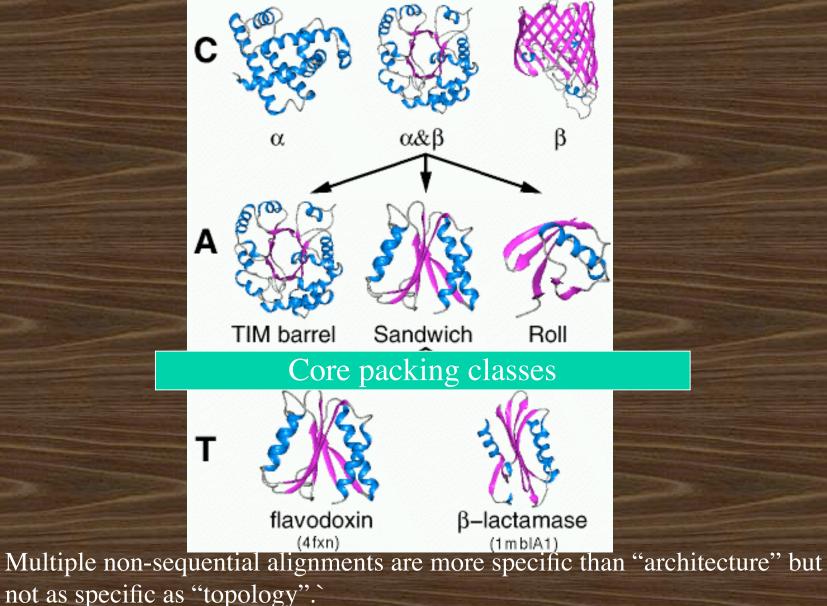
Markov states represent amino acid sequences and positions in space. Connections between them represent loops.

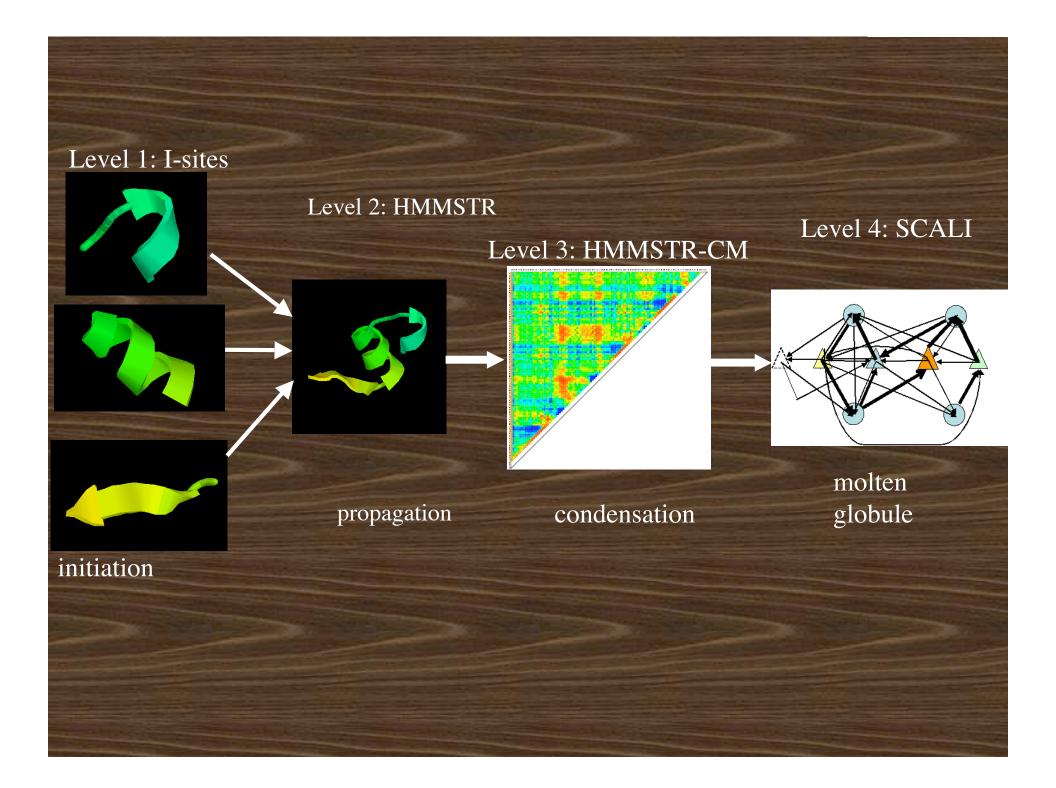
Hidden Markov models for a/b/a proteins



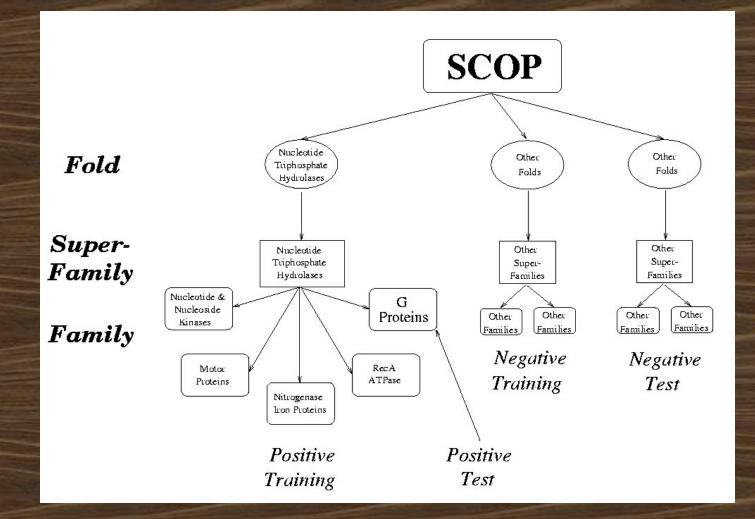


Non-sequential clusters may be a useful for classifying proteins





Level 5: Global topology



Separation of the SCOP 1.53 database into training and test sequences, shown for the G proteins test family

Aligning Twilight Zone sequences using HMMSUM

sequence 📃

HMMSTR

structure prediction

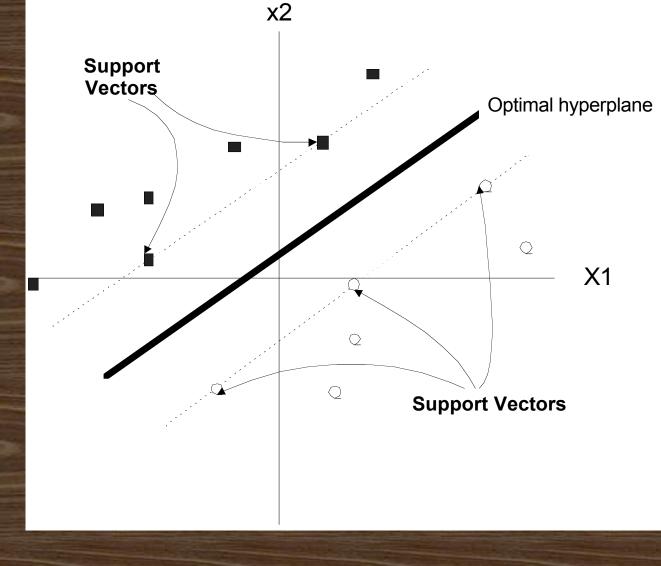
HMMSUM

alignment

Gap penalty Correct matches Accuracy Coverage (%) Matrix Extension Counts P value % P value Opening BLOSUM50 8 2.3 12,211 41.8 35.9 HMMSUM-M 0.316 40.8 15 0.9 13,850 < 0.001 42.4 HMMSUM-L 1.2 0.110 39.9 13,551 < 0.001 43.8 12 HMMSUM-D 21 0.5 15,927 < 0.001 46.0 < 0.001 46.9

Support Vector Machine

4052 proteins --> 54-dimensional vector. Each dimension is the order of appearance HMMSTR states for one family.



HMMSTR as the basis for a Support Vector Machine

4052 proteins, represented as 282dimensional vector = Prob of each HMMSTR state.

60 50 of families with given performance 05 05 05 יי אין גן . No PSI-BLAS SVM-pairwise SVM-Fisher SAM 10 SVM-I-sites SVM-HMMSTR 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0 ROC

SCOP benchmark of 54 sequence families

(Hou, Y et al, Bioinformatics, 2003; Proteins, 2004)

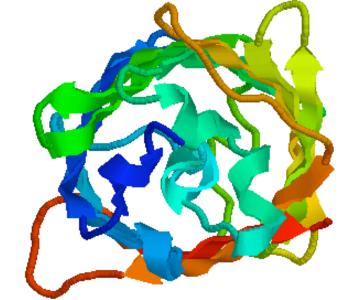
No sparse data problem as we mine longer and longer patterns! Why?

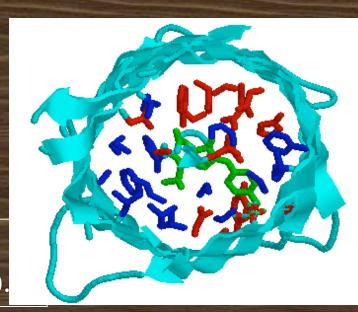
Steps along the early folding pathway: **Model** Complexity (1) Initiation ~40 motifs **I**-sites HMMSTR 1.1 transitions/node (2) propagation HMMSTR-CM (3) condensation ~1% of pairs occur (4) molten globule **SCALI** only self-avoiding paths late SVM-HMMSTR ~1000-2000 (5) native state folds

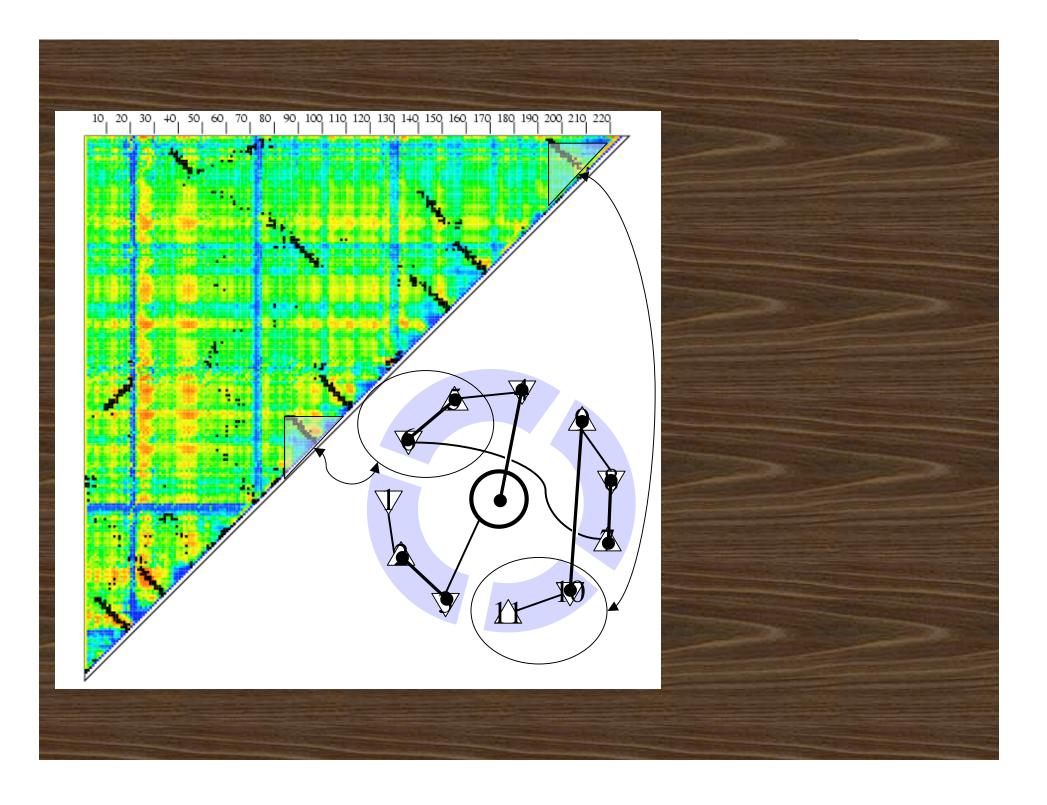
GFP is an 11-stranded anti-parallel beta barrel.



The core of the protein contains nonpolar (blue) and polar sidechains (red).







A peptide biosensor based on GFP



Are there any conclusions?

We assumed that proteins fold in a certain, heirarchical manner, mined the data accordingly and found recurrence at every level, from short motifs to global structure.

