Model building with restraints

Building a small molecule

Energy

Energy minimization
What is energy?

• **Energy** \((G)\) is a measure of the **probability** of the **state of the system**. Energy is the **negative log** of the probability ratio, **times temperature**.

• \(\Delta G = -RT \ln \left(\frac{A}{\text{not } A} \right)\)
 - or \(-RT \ln(\frac{P}{1-P})\), where \(P\) = probability.

• The system = **the atoms**.

• State = **where the atoms are**.
 (This is a vague definition so we can be flexible about what the energy means.)

• Energy is always **relative** (see fig).

• Energy is measured between **two** states.

• Energy is expressed in J/mole, or kJ/mole.

• Energy breaks down into **enthalpy** \((H)\) and **entropy** \((S)\).
 \(\Delta G = \Delta H - T\Delta S\).

• Energy also breaks down to **potential** energy and **kinetic** energy.
The reference state is not a physically possible state for a protein.

- Reference state is the state at which energy is zero.
- For bonds, bond angle, dihedral angle, improper angle and planarity, the reference state is the ideal distance, angle, or planarity.
- For non-bonded interactions, the reference state is infinite distance.
- No protein can be drawn with ideal bond angles and infinite distance!

∴ the reference state for protein is not a real state.
What good is the number if the reference state is not physical?

- Energy calculations should not be used "at face value". In other words, a negative number does not mean your molecule is stable. A positive number does not mean it is unstable.
- Instead, energy calculations should be used in a relative sense.

\[\Delta G = E_2 - E_1. \]

If state 1 has energy \(E_1 \) relative to the reference state, and state 2 has energy \(E_2 \) relative to the reference state. Then the difference between state 1 and state 2 is independent of the reference state. \(\Delta G = E_2 - E_1. \)
Electrostatics are truncated

• Pairwise calculations go up with the square of the number of atoms.
• So, we set an upper limit on the distances that will be calculated.
• After all, the Coulomb term goes to zero....
• Or does it?
• Electrostatic force goes down with the square of the distance, but 3D space goes up with the square of the distance.
Review of force fields: molecular mechanics

• Molecular mechanics
 – bond length
 – bond angle
 – dihedral angle
 – improper angle (chirality)
 – planarity
Review of force fields: molecular mechanics

• Molecular mechanics
 – bond length
 – bond angle
 – dihedral angle
 – improper angle (chirality)
 – planarity
Review of force fields: molecular mechanics

- Molecular mechanics
 - bond length
 - bond angle
 - dihedral angle
 - improper angle (chirality)
 - planarity
Review of force fields: molecular mechanics

- Molecular mechanics
 - bond length
 - bond angle
 - dihedral angle
 - improper angle (chirality)
 - planarity

isoleucine beta carbon is chiral
Review of force fields: molecular mechanics

- Molecular mechanics
 - bond length
 - bond angle
 - dihedral angle
 - improper angle (chirality)
 - planarity
Review of force fields: molecular mechanics

- Molecular mechanics
- Non-bonded interactions
 - electrostatics
 - van der Waals

\[F = k_e \frac{q_1 q_2}{r^2} \]
Review of force fields: molecular mechanics

• Molecular mechanics
• Non-bonded interactions
 – electrostatics
 – van der Waals

\[V_{LJ} = 4\varepsilon \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{6} \right] \]
Review of force fields: solvation

- Explicit solvation
 - water models
 - TIP3P
 - TIP4P
- Implicit solvation
Review of force fields: solvation

- Explicit solvation
- Implicit solvation
 - Distance dependent dielectric
 - Poisson-Boltzmann
 - Generalized Born
 - Accessible surface area
Three energetic terms that are not properly calculated in protein force fields.

- Electrostatics
- H-bonds
- The hydrophobic effect
Electrostatics are truncated

\[F = k_e \frac{q_1 q_2}{r^2} \]

Cutoff to zero force at \(r_{ij} = 8\text{Å} \)

Number of atoms goes up quadratically with distance.

Although \(F \) is close to zero at \(> 8\text{Å} \), total sum of forces at 8Å may be significantly non-zero.

\[\phi_i = \frac{1}{4\pi\varepsilon_0} \sum_{j=1(j\neq i)}^{N} \frac{Q_j}{r_{ij}}. \]
Electrostatics are truncated

- Energy is the integral of the forces.
- The cumulative effect of many distant charges is **not negligible**.
- Case in point, highly charged proteins use electrostatics to attract ions from a distance (e.g. the enzyme *superoxide dismutase*).
- Other case in point. Highly charged proteins repel each other at long distances, increasing solubility. Decreasing aggregation.

\[
\phi_i = \frac{1}{4\pi\varepsilon_0} \sum_{j=1(j\neq i)}^N \frac{Q_j}{r_{ij}}.
\]
H-bond strength depends on environment

- H-bond donors have a polar H (usually N, or O)
- H-bond acceptors have lone-pairs (usually O, or N)
- Together they form a hydrogen bond.
- Part electrostatic, part covalent.

- Because charge-charge interactions are stronger when buried, buried h-bonds are stronger than solvated H-bonds.
Energy of unsatisfied H-bonds not calculated

• H-bond donors and acceptors do not want to be left unsatisfied.
• Force fields don't penalize unsatisfied H-bond donors/acceptors, unless a long MD simulation is carried out.
• If MD is not considered, then buried and exposed unpaired donors and acceptors are assigned the same energy, which is wrong!
Energy of unpaired or paired buried charges not properly calculated

- The energy (ΔH) of paired positive and negative buried charges (a "salt bridge") is overestimated by forcefields. (It is really more negative)

\[F = k_e \frac{q_1 q_2}{r^2} \]

The energy (ΔH) of unpaired positive or negative buried charges (see fig) is underestimated by forcefields. (It is really positive, not zero)
The Hydrophobic Effect: As hydration spheres coalesce, volume decreases, free energy decreases

Solvent accessible positions (dashed line) around non-polar atoms contain "high energy waters" because those waters lose some H-bonds.

When non-polar atoms come together it decreases the number of high energy waters. (Even at the cost of creating some void space (brown).

Solvent-excluded surface (SES) is a good estimator of hydration layer volume.
The Hydrophobic Effect: an emergent property of water.

- The hydrophobic effect is expressed if waters are modeled and a long simulation is done, because water is naturally attracted to water.
- Thus, the hydrophobic effect is an *emergent* property of a long simulation.
- It is **not a bug** that the hydrophobic effect is not in the force field explicitly.
- Don't expect energy minimization alone to bury hydrophobic surfaces. It won't. You have to do it manually.
Other imperfections in molecular force fields

- **Partial charges** are calculated, but are not allowed to change dynamically. They do change! But not much.
- **Dihedral angles** are poorly modeled by a cosine function. The true barrier to rotation depends on "1-4" interactions. This usually does not matter.
- **Overpacking a protein core** *(i.e. when designing a protein)* makes a protein unstable, but the calculated E_{VDW} (or E_{LJ}) energy is better! Why? Because dynamic movement is ignored. More movement means more entropy.
What do we do about it?

(relevant when we start designing)

- We remain vigilant!
- If you find a buried, unsatisfied H-bond, satisfy it or understand that it is high-energy.
 - either move atoms or add a water.
- Minimize empty space between side chains in the core but don't overpack.
- Be aware that long-range electrostatics are not calculated. Visualize electrostatic surfaces to predict long-range behavior.
Restraints: energy minimization helpers.
restraint = a function that approaches a minimum as the parameters approach ideal values.

For example, the bonded distance A-B is restrained to 1.52Å using the restraint \(E(A,B) = (D_{AB} - 1.52)^2 \)

--- versus ---

constraint = a function that reduces the number of variable parameters in the system.

For example, atoms A, B, C and D are constrained to be in the same plane. Move atoms, then solve for the constrained atom position.

Stereochemistry energy functions are **restraints**.
Harmonic and non-harmonic restraints

Restraint forces are applied to move the atoms to their ideal distances/angles/positions/geometry.

Harmonic potential:

\[E(i, j) = \omega (x_{ij} - T)^2 \]

where \(x_{ij} \) is the current distance between \(i \) and \(j \), and \(T \) is the ideal distance between \(i \) and \(j \).
How to force hydrogen bonds using restraints

- To add a restraint
 Edit | Potential | Restrain, distance,
 Target 1.8, 1.8, Weight 50
 Pick amide H and carbonyl O.
 Click Create.
 Cancel | Restrain (or esc) when done

- Energy minimize
 Compute | prepare | Structure preparation
 Checks for missing atoms, assigns energies.
 SVL: run ‘gizmin.svl’

 When finished, be sure to Cancel | GizMOE_Minimizer

- To remove or modify restraints
 Potential setup (button at far lower left)
 Restraints tab
• *Select the region you want energy minimize*

• *Edit | Potential | Unfix*

• *Select | Invert*

• *Edit | Potential | Fix.*

• *Minimize.*
review questions

• What does sp2 hybridization mean?
• How is energy related to probability?
• What constitutes a “system”?
• Give an example of a state of a system.
• What changes when we minimize the energy? (besides the energy)
• Energy can be broken down into what two components?
• Name the molecular mechanics energy functions.
• What is a restraint, mathematically?
• The hydrophobic effect is an emergent property of what two properties of water?
• In what way are H-bonds not properly modeled?
• In what way are electrostatics not properly modeled?
• Is the high energy of a buried unsatisfied H-bond donors an emergent property?