(1)

If you scratch a row of evenly spaced regular lines into a glass slide, each scratch will scatter all wavelengths of light in all directions. If there are enough lines and they are all separated by exactly the same distance d, then you get what is called "diffraction grating" and you see a rainbow of colors. If you have a single white light source shining on the glass slide at an angle $\theta=90.0^\circ$ at infinite distance, and the spacing between the lines is $2 \ \mu m$, at what angle(s) do you see green light ($\lambda=550 \text{ nm}$)? At what angle(s) do you see red light ($\lambda=700\text{nm}$)?

Draw me a picture to illustrate the diffraction of red light.
You have a crystal of butane, \(\text{C}_4\text{H}_4 \), the dimension of the cubic unit cell are 10 x 10 x 10 Å. The coordinates (X,Y,Z) of the carbon atoms are as follows:

- C1: (1.000, 8.000, 3.000)
- C2: (2.000, 7.500, 3.500)
- C3: (3.000, 7.000, 3.000)
- C4: (4.000, 6.500, 3.500)

Find the phase of the reflection \(F \) with Miller indices hkl = 1 2 0 using the Fourier transform. Show your work. Convert Å coordinates (X,Y,Z) to fractional coordinates (x,y,z). Graph the 4 scattering vectors, summed. Assume the scattering factor \(f=6.00 \) for each carbon atom. Here is the Fourier transform:

\[
F(h \ k \ l) = \sum_{r} f(r) e^{2\pi i(hx+ky+lz)}
\]

\[
F(1 \ 2 \ 0) = \text{___________} \text{ (amplitude), ________} \text{ (phase in degrees)}
\]
What is the upper limit coordinate error in Å of a protein crystal structure if the resolution is $d=2.5\text{Å}$ and the R-factor is $R=0.25$? (You may use the Luzzati plot, or you can assume the phase error = $2\pi R/2.3$)